Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-01T22:15:52.714Z Has data issue: false hasContentIssue false

Structural Modeling Based on the Oxygen Sublattice Features in the Perovskite Family

Published online by Cambridge University Press:  15 February 2011

L. E. Depero
Affiliation:
Istituto Nazionale di Fisica per la Materia e Dipartimento di Chimica e Fisica per i Materiali, Università di Brescia, Via Branže, 38 – 25123 Brescia, ITALY
L. Sangaletti
Affiliation:
Istituto Nazionale di Fisica per la Materia e Dipartimento di Chimica e Fisica per i Materiali, Università di Brescia, Via Branže, 38 – 25123 Brescia, ITALY
F. Parmigiani
Affiliation:
INFM & Politecnico di Milano, Dipt, di Fisica - Milano, ITALY
E. Giulotto
Affiliation:
INF & Univ.di Pavia, Dipt, di Fisica A. Volta -Pavia, ITALY
L. Rollandi
Affiliation:
INF & Univ.di Pavia, Dipt, di Fisica A. Volta -Pavia, ITALY
Get access

Abstract

A new approach based on the study of distortion in the AO3 layer of ABO3 perovskites is proposed with the aim to discuss their ferroelectric properties. Rhombohedral distortions exist for either A-O average distances shorter than 2.7 A (space group Nr.161) or A-O distances larger than 3 Å (space group Nr.160). In the case of small distortions tetragonal or orthorhombic symmetries are preferred. Moreover, a relationship between the dimension of the B cation and the distortion in this type of structure has been established. Preliminary results show interesting correlations between distortions in the AO3 plane and the critical temperature of ferroelectric materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matthias, B.T., Science, 113, p.591 (1951)Google Scholar
2. Jona, F., Shirane, G., Ferroelectric Crystals, Dover Publications, Inc., NewYork, 1993, pp. 108260 Google Scholar
3. Michel, C., Moreau, J.M., James, W.J., Acta Cryst. B27, p.501 (1971)Google Scholar
4. Megaw, H.D., Darlington, C.N.W., Acta Cryst. A31, p. 161(1995)Google Scholar
5. Thomas, N.W., Beitollahi, A., Acta Cryst. B50, p.549 (1994)Google Scholar
6. Glazer, A.M., Acta Cryst., B28, p.3384 (1972)Google Scholar
7. Glazer, A.M., Acta Cryst., A31, p.756 (1975)Google Scholar
8. Thomas, N.W., Acta Cryst., B52, p. 16 (1996)Google Scholar
9. Abrahams, S.C., Acta Cryst., B44, p.585 (1988)Google Scholar
10. Abrahams, S.C., Acta Cryst., B45, p.228 (1989)Google Scholar
11. Abrahams, S.C., Acta Cryst., B52, p.790 (1996)Google Scholar
12. Abrahams, S.C., Mirsky, K., Nielson, R.M, Acta Cryst., B52, p.806 (1996)Google Scholar
13. Abrahams, S.C., Kurts, S.K., Jamieson, P.B., Phys. Rev., 172, p.5651 (1968)Google Scholar
14. Zhang, Q.M., You, H., Mulvihill, M.L., Jang, S.J., Solid State Comm., 97, p.693 (1996)Google Scholar
15. Depero, L., Sangaletti, L., submitted for pubblicationGoogle Scholar
16. Inorganic Crystal Structure Database (ICSD) by Gmelin Institut and FIZ Karlsruhe, Release 1996-1Google Scholar
17. Fox, G.R., Krupanidhi, S.B., J. of Mat. Res., 9, p.699 (1994).Google Scholar