Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-09T10:43:02.386Z Has data issue: false hasContentIssue false

Structure evolution during polymer blend dewetting and demixing

Published online by Cambridge University Press:  01 February 2011

J. S. Gutmann
Affiliation:
Institut für Polymerforschung Dresden e.V., Hohe Straβe 6, D-01069 Dresden, Germany
P. Müller-Buschbaum
Affiliation:
TU-München, Physik Department LS E13, James-Franck-Straβe 1, D-85747 Garching, Germany
O. Wunnicke
Affiliation:
Institut für Polymerforschung Dresden e.V., Hohe Straβe 6, D-01069 Dresden, Germany
M. Stamm
Affiliation:
Institut für Polymerforschung Dresden e.V., Hohe Straβe 6, D-01069 Dresden, Germany
Get access

Abstract

The paper investigates the structure formation in thin polymer blend films. Such a control of the structure formation is of great importance in many industrial applications. In this paper we follow two different routes in order to control the surface structures. One is the creation of surface structured through a dewetting of the thin films. The dewetting is archived through a plastification of the film either annealing or by swelling in a solvent atmosphere. As a result the control of this process allows to form very small and regular structures. The second route utilizes the demixing of an strongly immiscible polymer blend during preparation and yields much less defined structures. To allow a quantitative comparison if the evolving surface structures are statistically analyzed in terms of their rms-roughness and Fourier spectrum and compared with predictions from existing growth models.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Krausch, G., Materials Science and Engineering, R14, 1 (1995)Google Scholar
2. Krausch, G., Ber. Bunsenges. Phys. Chem., 98, 446 (1994)Google Scholar
3. Israelachvili, J. N.: Intermolecular and surface forces; Second edition, Academic Press, London (1991)Google Scholar
4. Reiter, G., Phys. Rev. Lett, 68, 75 (1992)Google Scholar
5. Fondecave, R., Brochard-Wyart, F., Macromolecules, 31, 9305 (1998)Google Scholar
6. Reiter, G., Europhys. Lett., 23, 579 (1993)Google Scholar
7. Brochard-Wyart, F., Redon, C., Sykes, C.; C. R. Acad. Sci. Ser. 2, 19, 314 (1992)Google Scholar
8. Xie, R., Karim, A., Douglas, J. F., Han, C. C., Weiss, R. A., Phys. Rev. Lett., 81, 1251 (1998)Google Scholar
9. Binder, K., Puri, S., Frisch, H. L., Faraday Disc., 112, 1 (1999)Google Scholar
10. Müller-Buschbaum, P., Vanhoorne, P., Scheumann, V., Stamm, M., Europhys. Lett., 40, 655 (1997)Google Scholar
11. Affrossman, S., O'Neill, S. A., Stamm, M., Macromolecules, 31, 6280 (1998)Google Scholar
12. Dalnoki-Veress, K., Forrest, J. A., Stevens, J. R., Dutcher, J. R., J. Polym. Phys., 34, 3017 (1996)Google Scholar
13. Gutmann, J. S., Müller-Buschbaum, P., Stamm, M., Faraday Discuss., 112, 285 (1999)Google Scholar
14. Laschitsch, , Bouchard, C., Habicht, J., Schimmel, M., Rühe, J., Johansmann, D., Macromolecules, 32, 1244 (1999)Google Scholar
15. Mueller-Buschbaum, P., Gutmann, J. S., Cubitt, R., Stamm, M., Coll. Polym. Sci., 277, 1193 (1999)Google Scholar
16. Mueller-Buschbaum, P., Gutmann, J. S., Stamm, M., Phys. Chem. Chem. Phys., 1, 3857 (1999)Google Scholar
17. Müller-Buschbaum, P., Gutmann, J. S., Stamm, M., Cubitt, R., Cunis, S., von Krosigk, G., Gehrke, R., Petry, W., Physica B, 283, 53 (2000).Google Scholar
18. Wagner, A. J., Yeomans, J. M., Phys. Rev. Lett., 80, 1429 (1998)Google Scholar