Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-01T18:49:39.708Z Has data issue: false hasContentIssue false

Study of the Effects of MeV Ag, Cu, Au and Sn Implantation on the Optical Properties of LiNbO3

Published online by Cambridge University Press:  10 February 2011

E. K. Williams
Affiliation:
Dept. of Natural and Physical Sciences, PO Box 1447, Normal, AL 35762-1447
D. Ila
Affiliation:
Dept. of Natural and Physical Sciences, PO Box 1447, Normal, AL 35762-1447
S. Sarkisov
Affiliation:
Dept. of Natural and Physical Sciences, PO Box 1447, Normal, AL 35762-1447
M. Curley
Affiliation:
Dept. of Natural and Physical Sciences, PO Box 1447, Normal, AL 35762-1447
D. B. Poker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
D. K. Hensley
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
C. Borel
Affiliation:
Université Claude Bernard, Lyon, France.
Get access

Abstract

We present the results of characterization of linear absorption and nonlinear refractive index of Au, Ag, Cu and Sn ion implantation into LiNbO3. Silver was implanted at 1.5 MeV to fluences of 2 to 17 × 1016/cm2 at room temperature. Gold and copper were implanted to fluences of 5 to 20 × 1016/cm2 at an energy of 2.0 MeV. Tin was implanted to a fluence of 1.6 × 1017/cm2 at 160 kV. After heat treatment at 1000°C a strong optical absorption peak for the Au implanted samples appeared at ∼620 nm. The absorption peaks of the Ag implanted samples shifted from ∼450 nm before heat treatment to 550 nm after 500°C for lh. Heat treatment at 800°C returned the Ag implanted crystals to a clear state. Cu nanocluster absorption peaks disappears at 500°C. No Sn clusters were observed by optical absorption or XRD. The size of the Ag and Au clusters as a function of heat treatment were determined from the absorption peaks. The Ag clusters did not appreciably change in size with heat treatment. The Au clusters increased from 3 to 9 nm in diameter upon heat treatment at 1000°C. TEM analysis performed on a Au implanted crystal indicated the formation of Au nanocrystals with facets normal to the c-axis. Measurements of the nonlinear refractive indices made using the Z-scan method showed that Ag implantation changed the sign of the nonlinear index of LiNbO3 from negative to positive.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arnold, G. W., J. Appl. Phys. 46 (1975) 4466.Google Scholar
2. Magruder, R. H. III, Zuhr, R,. A., Osborne, D. H. Jr, Nucl. Inst. and Meth. B99 (1995) 590.Google Scholar
3. Takeda, Y., Hioki, T., Motohiro, T., Noda, S. and Kurauchi, T., Nucl. Instr. and Meth. B91, (1994) 515. Google Scholar
4. White, C. W., Zhou, D. S., Budai, J. D., Zuhr, R. A., Magruder, R. H. and Osborne, D. H., Mat. Res. Soc. Syrup. Proc. Vol 316, (1994)499.Google Scholar
5. Fukumi, K., Chayahara, A., Adachi, M., Kadono, K., Sakaguchi, T., Miya, M., Horino, Y., Kitamura, N., Hayakawa, J., Yamashita, H., Fujii, K. and Satou, M., Mat. Res. Soc. Symp. Proc. Vol 235, (1992) 389.Google Scholar
6. Ila, D., Wu, Z., Zimmerman, R. L., Sarkisov, S., Smith, C.C., Poker, D. B., and Hensley, D. K., Mat. Res. Soc. Symp. Proc. Vol 457 (1997) 143.Google Scholar
7. Ila, D., Wu, Z., Zimmerman, R. L., Sarkisov, S., Qian, Y., Poker, D. B., and Hensley, D. K., Mat. Res. Soc. Symp. Proc. Vol 438 (1997) 417.Google Scholar
8. Qian, Q., Bla, D., He, K. X., Curley, M., Poker, D. B., Mat. Res. Soc. Symp. Proc. Vol 396 (1996) 423.Google Scholar
9. Ba, D., Wu, Z., Smith, C.C., Poker, D. B., Hensley, D. K., Klatt, C., and Kalbitzer, S., Nucl. Instr. and Meth.B 127/128 (1997) 570.Google Scholar
10. Qian, Y., Ila, D., Zimmerman, Rt L., Poker, D. B., Boatner, L. A., and Hensley, D. K., Nucl. Instr. and Meth. B 127/128 (1997) 524.Google Scholar
11. Gonella, F., Mattei, G., Mazzoldi, P., Arnold, G. W., Battaglin, G., Calvelli, P., Poloni, R., Bertoncello, R., and Haglund, R.F. Jr, Appl. Phys. Lett. 69 (20) 3101.Google Scholar
12. Mie, G., Ann. Physik 25 (1908) 377.Google Scholar
13. Creighton, J. A., Eadon, D. G., J. Chem. Soc. Faraday Trans. 87 (1991) 3881.Google Scholar
14. Lide, D. R., Ed., CRC Handbook of Chemistry and Physics, 76th Ed (CRC Press, Boca Raton, 1995).Google Scholar
15. Palik, E. D., Ed., Handbook of Cptical Constants of Solids (Academic Press, San Diego, 1985).Google Scholar
16. Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters (Springer Series in Materials Science, Vol 25) (Springer Verlag, Berlin, 1995)Google Scholar
17. Sheik-bahae, M., Said, A. A., Wei, T. H., Wu, Y. Y., Hagan, D. J., Soileau, M. J. and van Stryland, E. W., SPIE Vol.1148 Nonlinear Optical Properties of Materials, 41.Google Scholar
18. Sheik-bahae, M., Said, A. A., Wei, T. H., Hagan, D. J. and van Stryland, E. W., IEEE J. Quantum Electronics 26 (1990) 760.Google Scholar
19. Schineller, E. R., Flarm, R. P. and Wilmot, D. W., J. Opt. Soc. Am. 58 (1968) 1171.Google Scholar
20. Townsend, P. D., Nucl. Instr. and Meth. B 46 (1990)18.Google Scholar
21. Shang, D. Y., Matsuno, H., Saito, Y., and Suganomata, S., J. Appl. Phys. 80 (1996) 406.Google Scholar
22. Shang, D. Y., Saito, Y., Kittaka, R., Taniguchi, S. and Kitahara, A., J. Appl. Phys. 80 (1996) 6651.Google Scholar
23. Townsend, P. D., Rep. Prog. Phys. 50 (1987) 501.Google Scholar
24. Poker, D. B. and Thomas, D. K., Nucl. Inst. and Meth. B 39(1989) 716.Google Scholar
25. Zeigler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, NY, 1985)Google Scholar
26. Haglund, R. F., Yang, L., Magruder, R. H., Wittig, J. E., Becker, K. and Zuhr, R. A., Opt. Lett. 18 (1993) 373.Google Scholar