Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-05T12:26:13.747Z Has data issue: false hasContentIssue false

A Study of the Kinetic of Precipitation and the Morphology of Precipitates Induced by Plastic Deformation in Al-Zn Alloys

Published online by Cambridge University Press:  21 February 2011

C. Mai
Affiliation:
Gemppm (LA.341), I.N.S.A. - BAT, 502 – 69621 - Villeurbanne - France
P. Merle
Affiliation:
Gemppm (LA.341), I.N.S.A. - BAT, 502 – 69621 - Villeurbanne - France
J. Merlin
Affiliation:
Gemppm (LA.341), I.N.S.A. - BAT, 502 – 69621 - Villeurbanne - France
F. Livet
Affiliation:
LTPCM (LA.29) E.N.S.E.E.G. - BP 44 - St Martin D'Here - France
Get access

Abstract

The influence of plastic deformation on the kinetic of precipitation and the morphology of precipitates in an Al-Zn 4.4 % at. studied by T.E.P. and SAXS is reported. Some results can be pointed out ; after a given amount plastic deformation at room temperature by tensile strength:

i - the precipitates have a flat shape (instead of the spherical or ellipsoidal shape usualy observed in this alloys.

ii - the precipitate volume fraction is a function of strain (ε) and strain rate (ė). For a given ė, the higher precipitate volume fraction is obtained with the higher ε. For a given ε, the lower ė the higher the volume fraction of precipitates.

iii - the scattering intensities at small angle for three orientations of the sample (α =0,45°, 90° where α is the angle between the axis of tensile and the scattering vector- are different. A calculation for an anisotropic orientation of flat discs shows that precipitates have a preferential texture. The orientation is about 50° from the tensile axis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bortz, A.B., Kalos, M.H., Lebowitz, J.L., Zendejus, M.A. and Marro, J., J. Phys. Rev. 10, 2, (1974).Google Scholar
2. Vigier, G., Thesis Lyon, (1981).Google Scholar
3. Laslaz, G., Kostorz, G., Roth, M. and Guyot, P., Phys. Stat. Sol. (a) 4l, 577, (1977).Google Scholar
4. Mimault, J., Delafond, J., and Junqua, A., Phys. Stat. Sol., 20, 195, (1973).Google Scholar
5. Cauvin, R. and Martin, G., Phys. Rev. B, 23, 7, 3333, (1981).Google Scholar
6. Bergheran, A., Acad, C.R.. Sci. Paris, 17, 1560, (1951).Google Scholar
7. Murakami, Y., Kawano, O., and Tamura, H., Mec. Fac. Eng., Kyoto, Univ., 1, 34, (1964).Google Scholar
8. Vigier, P., Zahra-Kubik, A.M., DENOUX, M., Brisset, J.P. and Wintenberger, M. Mem. Sci. Rev. Met., 1, 51, (1972).Google Scholar
9. Merle, P., Pelletier, J.M., and Merlin, J., Mem. Sci. Rev. Met., 209, (1979).Google Scholar
10. Pelletier, J.M., Merlin, J., and BORELLY, R., Mat. Sci. and Eng., 33, 95, (1978).Google Scholar
11. Borrelly, R., Merle, P., Merlin, J., Pelletier, J.M. and Vigier, G., Paper will be presented at Int. Conf. on Phase Transf. in Solids - (creete), (1983).Google Scholar
12. Glatter, O., and Kratky, O., Small Angle X-Ray Scattering(Academic Press, 1982).Google Scholar
13. Mai, C., Vigier, G. and LIVET, F., Scripta. met., 15, 1179, (1982).Google Scholar
14. Laslaz, A., Thesis, Grenoble, (1978).Google Scholar