Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-04T18:23:49.736Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Copper (I) Chloride (CuCl) Nanocrystals in Conductive Polymer for UV Light Emitters

Published online by Cambridge University Press:  17 April 2019

M. M. Alam*
Affiliation:
Nanomaterials Processing Laboratory, School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
F. Olabanji Lucas
Affiliation:
Nanomaterials Processing Laboratory, School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
A. Cowley
Affiliation:
Nanomaterials Processing Laboratory, School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
Karl Crowley
Affiliation:
School of Chemical Science, National Centre for Research, Dublin City University, Dublin 9, Ireland
S. Daniels
Affiliation:
Nanomaterials Processing Laboratory, School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
K.V. Rajani
Affiliation:
Nanomaterials Processing Laboratory, School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
P. J. McNally
Affiliation:
Nanomaterials Processing Laboratory, School of Electronic Engineering, Dublin City University, Dublin 9, Ireland
*
*Corresponding author. E-mail: milon112000@gmail.com
Get access

Abstract

Intrinsic γ-Copper (I) Chloride is an ionic I-VII compound semiconductor material with relatively low conductivity. To fabricate an efficient electroluminescent device based on CuCl nanocrystals (NC) the conductivity of the CuCl NC film should be relatively high. In order to improve the conductivity of CuCl films, nanocrystals were embedded in a highly conductive polymer (Polyaniline) and deposited on glass substrates via the spin-coating method. The deposited films were heated at 140°C for durations between 1 and 12 hours in vacuo. The room temperature UV-Vis absorption spectra for all CuCl films showed both Z1,2 and Z3 excitonic absorption features and the absorption intensity increased as the anneal time increased. Room temperature photoluminescence (PL) measurements of the hybrid films reveal very intense Z3 excitonic emission. Room temperature X-ray diffraction (XRD) confirmed the preferential growth of CuCl nanocrystals whose average size is ≈40 nm in the <111> orientation. Resistivity measurements were carried out using a four-point probe system, which confirmed that the resistivity of the composite film was ≈500 Ω/cm. This is an improvement when compared to the vacuum evaporated CuCl thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yoffe, A. D., ADV. Phys. 42, 173 (1993).Google Scholar
2. Banyai, L. and Koch, S.W., Semiconductor Quantum Dots (World Scientific, Singapore), (1993).Google Scholar
3. Alam, M. M., Olabanji Lucas, F., Danieluk, D., Bradley, A. L., Rajani, K. V., Daniels, S., McNally, P. J., J. Phys.D: Appl. Phys. 42, 225307 (2009).Google Scholar
4. Castillo, A. S. and Rodrıguez, F. P., J. Appl. Phys. 90 (7), 3662 (2001).Google Scholar
5. Ikezawa, M. and Masumoto, Y., Jpn. J. Appl. Phys. 36, 4191 (1997).Google Scholar
6. Reilly, L.O., Mitra, A., Natarajan, G., J. Cryst. Growth. 287, 139 (2006).Google Scholar
7. Cardona, M., Phys. Rev. 129, 69 (1963).Google Scholar
8. Zhang, Young Cai, Tang, Jing Yuan, J. Materials Letters 61, 3708 (2007).Google Scholar
9. Ambacher, O., J. Phys. D: Appl. Phys. 31, 2653 (1998).Google Scholar
10. Brune, A., Jiang, S., Mater. Res. Bull. 30, 573 (1995).Google Scholar
11. Recupero, V., Pino, L., Cordaro, M., Fuel Process. Technol. 85, 1445 (2004).Google Scholar
12. Li, Z., Xie, K., Slade, R.C.T., Appl. Catal, A Gen. 209, 107 (2001).Google Scholar
13. Lucas, F.O., Reilly, L.O., Natarajan, G., J. Cryst. Growth. 287, 112 (2006).Google Scholar
14. Gong, R., Chen, Y., Liu, W., J. Yunnan Univ. 27 (3A) 184 (2005).Google Scholar
15. Vaidya, B.K., Nature, 123, 414 (1929).Google Scholar
16. Sesselmann, W., Chuang, T.J., Surf. Sci. 176, 32 (1986).Google Scholar
17. Remeika, J.P., Batlogg, B., Mater. Res. Bull. 15, 1179 (1980).Google Scholar
18. Fukumi, K., Chayahara, A., Kageyama, H., J. Non-Cryst. Solids. 259, 93 (1999).Google Scholar
19. Zhu, Y., Qian, Y., Cao, Y., Mater. Sci. Eng., Solid-State Mater. B 57, 247 (1999).Google Scholar
20. Laine, RM, Sanchez, C, Brinker, CJ, Giannelis, PA: Materials Research Society. 628 (2000).Google Scholar
21. Sanchez, C, Lebeau, B. MRS Bull. 26, 377 (2001).Google Scholar
22. Ogoshi, T, Itoh, H, Kim, KM, Chujo, Y., Macromolecules 35, 334 (2002).Google Scholar
23. Lucas, F O, Mitra, A, McNally, P.J., Daniels, S., Bradley, A. L., Taylor, D. M., Proskuryakov, Y. Y., Durose, K. and Cameron, D. C., J. Phys. D: Appl. Phys. 40, 3461 (2007).Google Scholar
24. Ngamna, O., Morrin, A., Killard, A. J., Moulton, S. E., Smyth, M. R., Wallace, G. G., Langmuir. 23, 8569 (2007).Google Scholar
25. Moulton, S. E., Innis, P. C., KaneMaguire, L. A. P., Ngamna, O., Wallace, G. G., J. Appl. Phys. 4 402 (2004).Google Scholar
26. Cullity, B. D. and Stock, S. R., Elements of X-ray Diffraction, 3rd ed. Prentice Hall. 170 (2001).Google Scholar
27. O’Reilly, L., Natarajan, G., McNally, P.J., Cameron, D., Lucas, O.F., Martinez-Rosas, M., Bradley, L., Reader, A., J. Mater. Sci: Mater. Electron. 16, 415 (2005).Google Scholar
28. Nakayama, M., Ichida, H., and Nishimura, H., J. Phys.: Condens. Matter. 11, 7653 (1999).Google Scholar
29. Mitra, A., Lucas, F. O., O’Reilly, L., McNally, P. J., Daniels, S. and Natarajan, Gomathi, J Mater Sci: Mater Electron. 18 S21 (2007).Google Scholar
30. O’Reilly, L., Lucas, O. F., McNally, P. J., and Reader, A., Natarajan, Gomathi, Daniels, S., and Cameron, D. C., Mitra, A., Martinez-Rosas, M., and Bradley, A. L., J App Phys. 98, 113512 (2005).Google Scholar
31. Ueta, M., Kanzaki, H., Kobayashi, K., Toyozawa, Y., Hanumara, E., Excitonic processes in Solids, Springer, Berlin, 1986, p. 122.Google Scholar