Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-04T23:58:30.924Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Nickel-Doped ZnO Nanocrystals

Published online by Cambridge University Press:  01 February 2011

Xiao Li Zhang
Affiliation:
zhangxiaoli_li@hotmail.com, Pukyong National University, Department of Chemistry, 599-1, Daeyeon-3-dong, Namgu, Busan 608-737, Korea, Republic of
Ru Qiao
Affiliation:
yskang@pknu.ac.kr, Pukyong National University, Department of Chemistry, 599-1, Daeyeon-3-dong, Namgu, Busan, 608-737, Korea, Republic of
Yan Li
Affiliation:
yskang@pknu.ac.kr, Pukyong National University, Department of Chemistry, 599-1, Daeyeon-3-dong, Namgu, Busan, 608-737, Korea, Republic of
Ri Qiu
Affiliation:
yskang@pknu.ac.kr, Pukyong National University, Department of Chemistry, 599-1, Daeyeon-3-dong, Namgu, Busan, 608-737, Korea, Republic of
Young Soo Kang
Affiliation:
yskang@pknu.ac.kr, Pukyong National University, Department of Chemistry, 599-1, Daeyeon-3-dong, Namgu, Busan, 608-737, Korea, Republic of
Get access

Abstract

The structure and magnetism of ZnO-based solid solutions, dilute magnetic semiconductors, with nickel solute were obtained via a solvothermal method. Compared with previous methods for solid solution DMSs, our synthesis method was really facile and economical. The one-dimensional solid solution of Zn1-xNixO nanostructures were grown in a alcoholic solution. Moreover, the percentage of doped nickel can be easily controlled. The X-ray diffraction, transmission electron micrograph and magnetization hysteresis loops of nickel-doped ZnO nanocrystals were presented to confirm that the nickel impurities are embedded inside the nanocrystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohno, H., Science 281, 951 (1998).Google Scholar
2. Fiederling, R., Keim, M., Reuscher, G., Ossau, W., Schmidt, G., Waag, A., and Molenkamp, L. W., Nature (London) 402, 787 (1999).Google Scholar
3. Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D. D., Nature (London) 402, 790 (1999).Google Scholar
4. Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., and Ohno, Y., Nature (London) 408, 944 (2000).Google Scholar
5. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., and Koinuma, H., Science 291, 854 (2001).Google Scholar
6. Dietl, T., Ohno, H., Matsukura, F., Cibert, J., and Ferrand, D., Science 287, 1019 (2000).Google Scholar
7. Wang, Q., Sun, Q., and Jena, P., Phys. Rev. B. 70. 052408 (2004).Google Scholar
8. Sasanka, D., Renu, P., and Pattayil, A. J., Chem. Mater. 16, 1168 (2004).Google Scholar
9. Tal, M. and Gil, M., J. Phys. Chem. B 109, 20232 (2005).Google Scholar
10. Paul, I. A., Pavle, V. R., Steve, M. H., and Daniel, R. G., J. Am. Chem. Soc. 127, 14479 (2005).Google Scholar
11. Reed, M. L., El-Masry, N. A., Stadelmaier, H. H., Ritums, M. K., and Reed, M. J., Appl. Phys. Lett. 79, 3473 (2001).Google Scholar
12. Ueda, K., Tabata, H., and Kawai, T., Appl. Phys. Lett. 79, 988 (2001).Google Scholar
13. Ronning, C., Gao, P. X., Ding, Y., Wang, Z. L., and Schwen, D., Appl. Phys. Lett. 84, 783 (2004).Google Scholar
14. Liu, L. Q., Xiang, B., Zhang, X. Z., Zhang, Y., and Yu, D. P., Appl. Phys. Lett. 88, 063104 (2006).Google Scholar
15. Baik, J. M. and Lee, J.-L., Adv. Mater. 17, 2745 (2005).Google Scholar
16. Han, D. S., Park, J., Rhie, K. W., Kim, S., and Chang, J., Appl. Phys. Lett. 86, 032506 (2004).Google Scholar
17. norberg, N. S., kittilstved, K. R., Amonette, J. E., Kukkadapu, R. K., Schwartz, D. A., and Gamelin, D. R., J. Am. Chem. Soc. 126, 9387 (2004).Google Scholar
18. Zaets, W., Watanabe, K., and Ando, K., Appl. Phys. Lett. 70, 2508 (1997).Google Scholar
19. Pan, Z. W., Dai, Z. R., and Wang, Z. L., Science 291, 1947 (2001).Google Scholar
20. Wang, Z. L. and Pan, Z. W., Adv. Mater. (Weinheim, Ger.) 14, 1029 (2002).Google Scholar
21. Roy, V. A. L., Djurišić, A. B., Liu, H., Zhang, X. X., Leung, Y. H., Xie, M. H., Gao, J., Lui, H. F., and Surya, C., Appl. Phys. Lett. 84, 756 (2004).Google Scholar
22. Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Guillen, J. M., Johansson, B., and Gehring, G. A., Nat. Mater. 2, 673 (2003).Google Scholar
23. Hsu, H. S., Huang, J. C. A., Huang, Y. H., Liao, Y. F., Lin, M. Z., lee, C. H., Lee, J. F., Chen, S. F., Lai, L. Y., and Liu, C. P., Appl. Phys. Lett. 88, 242597 (2006).Google Scholar
24. Zhang, X. L., and Kang, Y. S., Inorg. Chem. 45, 4186 (2006)Google Scholar