Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-13T13:45:06.923Z Has data issue: false hasContentIssue false

Thermal Characterization of Nanowire Array in a-Al2O3 Matrix

Published online by Cambridge University Press:  15 March 2011

Diana-Andra Borca-Tasciuc
Affiliation:
Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Gang Chen
Affiliation:
Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Yu-Ming Lin
Affiliation:
Physics Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Oded Rabin
Affiliation:
Physics Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Mildred S. Dresselhaus
Affiliation:
Physics Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Electrical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Alexander Borshchevsky
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, MS 277-207, Pasadena, CA 91109, USA
Jean-Pierre Fleurial
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, MS 277-207, Pasadena, CA 91109, USA
Margaret A. Ryan
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, MS 277-207, Pasadena, CA 91109, USA
Get access

Abstract

Thermal properties characterization of Bi nanowires is critical in order to validate the predicted enhancement of their thermoelectric figure-of-merit. In this paper we report the effective thermal diffusivity of Bi nanowires array embedded in a-Al2O3 (alumina) template. The composite material consists of 85% alumina and approximately 15% Bi nanowires with a diameter of 40 nm and an average length of 40 [.proportional]m. Measurements are performed along the nanowire axis. A thermal wave is produced at the front side of the sample and it is monitored at the backside through a fast thermoelectric effect. A one-dimensional heat conduction model is used to extract the thermal diffusivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Recent trends in thermoelectric materials research, Tritt, T. (volume editor) Semicond. Semimet. 69–71 (2001)Google Scholar
2. Hicks, L.D. and Dresselhaus, M. S., Phys. Rev. B, 47, 12727 (1993).Google Scholar
3. Koga, T., Sun, X., Cronin, S. B., Dresselhaus, M. S., Wang, K. L., and Chen, G., J. Com.-Aided Mat. Design, 82, 830 (1997).Google Scholar
4. Koga, T., Sun, X., Cronin, S. B., and Dresselhaus, M. S., Appl. Phys. Lett., 75, 2438 (1999).Google Scholar
5. Sun, X., Zhang, Z., and Dresselhaus, M. S., Appl. Phys. Lett, 74, 4005 (1999).Google Scholar
6. Harman, T. C., Taylor, P. J., Spears, D. L., and Walsh, M. P., J. Electron. Mat., 29, L1 (2000).Google Scholar
7. Dresselhaus, M. S., Dresselhaus, G. D., Sun, X., Zhang, Z., Cronin, S. B., Koga, T., Ying, J. Y., and Chen, G., Micros. Thermophys. Eng., 3, 89 (1999).Google Scholar
8. Hicks, L.D. and Dresselhaus, M. S., Phys. Rev. B, 47, 16631 (1993).Google Scholar
9. Cronin, S. B., Lin, Y. M., Koga, T., Sun, X., Ying, J. Y., and Dresselhaus, M. S., Proceedings ICT'99, 554 (1999).Google Scholar
10. Lin, Y.-M., Fabrication, Characterization and Theoretical Modeling of Te-doped Bi Nanowire Systems for Thermoelectric Applications, M.S. Thesis, Massachusetts Institute of Technology, (2000).Google Scholar
11. Crouse, D., Lo, Y., Miller, A. E., and Crouse, M., Appl. Phys. Lett., 76, 49 (2000).Google Scholar
12. Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., and Tamamura, T., Appl. Phys. Lett., 71, 2770 (1997).Google Scholar
13. Zhang, Z., Ying, J. Y., and Dresselhaus, M. S., J. Mater. Res, 13, 1745 (1998).Google Scholar
14. Borca-Tasciuc, T., and Chen, G., Intl. J. Thermophys, 19, 557 (1998).Google Scholar
15. Borca-Tasciuc, T., and Chen, G., Proc. 1999 Natl. Heat Transf. Conf., (CD ROM) (1999)Google Scholar
16.www.abrisa.com -distributor of Corning glass. At the date this paper was written, the URL referenced herein were deemed to be useful supplementary material to this paper. Neither the author nor the Materials Research Society warrants or assumes liability for the content availability of URLs referenced in this paper.Google Scholar
17. Borca-Tasciuc, D.-A., Thermal Characterization of Nanochanneled Alumina, M.S. Thesis, University of California Los Angeles, (2001).Google Scholar