Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-05T05:04:52.380Z Has data issue: false hasContentIssue false

Thermal Evolution of Rectifier Speed and Deep Levels in Irradiated Silicon

Published online by Cambridge University Press:  15 February 2011

E. Ntsoenzok
Affiliation:
CERI-CNRS, 3A, rue de la Férollerie, 45071 Orléans, France
P. Desgardin
Affiliation:
CERI-CNRS, 3A, rue de la Férollerie, 45071 Orléans, France
G. Blondiaux
Affiliation:
CERI-CNRS, 3A, rue de la Férollerie, 45071 Orléans, France
D. C. Schmidt
Affiliation:
LMP, UMR 6630 CNRS, Faculté des sciences, 86960 Futuroscope Cedex, France
J. F. Barbot
Affiliation:
CERI-CNRS, 3A, rue de la Férollerie, 45071 Orléans, France
C. Blanchard
Affiliation:
LMP, UMR 6630 CNRS, Faculté des sciences, 86960 Futuroscope Cedex, France
P. O. Renault
Affiliation:
LMP, UMR 6630 CNRS, Faculté des sciences, 86960 Futuroscope Cedex, France
Get access

Abstract

P+NN+ silicon rectifiers have been irradiated by protons and alpha particles. DLTS and reverse recovery time (the so called TRR) measurements were performed in both as-irradiated and annealed (400°C) samples. The evolution of implantation induced-centers with the annealing is not the same when using the two particles. For example, the concentration of the well known A center increases (decreases) with the annealing when protons (alpha particles) are used. On the other hand, the measurements of the TRR show that the rectifier speed decreases with the annealing in all cases studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Holm, B. and Nielsen, K.B., J. Appl. Phys. 78 (10), p. 59705974, 1995.Google Scholar
2. Keskitalo, N., Hallen, A., Josyula, L., and Swensson, B.G., Ion Beam Modification of Materials, 1996, to be published in NIM B.Google Scholar
3. Ntsoenzok, E., Barbot, J.F., Desgardin, P., Vernois, J., Blanchard, C., and Isabelle, D.B., IEEE Transaction on Nuclear Science, 41, p. 19321936, 1994.Google Scholar
4. Nowak, W.D., Wondrak, W., and Silber, D., Archiv fûr Elektrotechnik, 72, p. 133140, 1989.Google Scholar
5. Miller, M.D., Schade, H., and Nuese, C.J., J. Appl. Phys. 47 (6), p. 25692578, 1976.Google Scholar
6. Deng, B. and Kuwano, H., Jpn. J. Appl. Phys. 34, p. 45874592, 1995.Google Scholar
7. Bleichner, H., Jonsson, P., Keskitalo, N. and Nordlander, E., J. Appl. Phys. 79 (12), p. 91429148, 1996.Google Scholar
8. Hallen, A. and Keskitalo, N., Masszi, F., and Nagl, V., J. Appl. Phys. 79 (8), p. 39063914, 1996.Google Scholar
9. Bhave, P.S. and Bhoraskar, V.N., Ion Beam Modification of Materials, 1996, to be published in NIM B.Google Scholar
10. Kwon, Y. K., Ishikawa, T. and Kuwano, H., J. Appl. Phys, 61 (3), p. 10551058, 1987.Google Scholar
11. Leturcq, P., Composants semiconducteurs, edited by Dunod Universite, Bordas Paris, 1987, p. D 311013.Google Scholar
12. Simoen, E., Vanhellemont, J. and Claeys, C., Appl. Phys. Lett., 69 (19), No. 19, p. 28582860.Google Scholar
13. Vapaille, A. and Castagne, R., Dispositifs et circuits integres semiconducteurs, edited by Dunod, Bordas, Paris, 1990, p. 9697.Google Scholar
14. Muskashev, B. et al, Proc. ICSTDS-89, Ed. Sumino, K. (North-Holland, Amsterdam, 1990), p. 429–425.Google Scholar