Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-10T16:43:24.618Z Has data issue: false hasContentIssue false

A Dutch geoscience perspective on the Katrinadisaster

Published online by Cambridge University Press:  19 June 2017

T.E. Törnqvist*
Affiliation:
Department of Earth and Environmental Sciences, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 701 18-5698, USA Email: tor@tulane.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A combination of geological and anthropogenic processes have rendered theU.S. Gulf Coast in general – and the Mississippi Delta in particular –extremely sensitive to coastal hazard. Thus, the Katrina disaster was not aquestion of ‘if’ but of ‘when’. This contribution outlines thegeo-environmental context of the Mississippi Delta that evolved during the20th century and set the stage for Hurricane Katrina’s devastation. Thisincludes a brief discussion of the processes responsible for coastal erosionand wetland loss, the proposed measures to combat these problems, and thepolicy decisions (or, rather, the lack thereof) made so far. A connection ismade with the 1953 storm surge that devastated the southwestern Netherlandsand had a profound impact on Dutch science and engineering by providing theimpetus for the widely known and highly praised Delta Plan, as well as forunprecedented studies of Holocene sea-level change. Whether a similar routewill be followed for the Gulf Coast is primarily dependent on the amount ofpolitical will. Results are presented of recent studies of crustal movementsin the Mississippi Delta that show surprising long-term stability of thePleistocene basement, evidence that could prove critical for decision makerswith regard to the rebuilding process. Finally, the neglect of theprecarious situation along the Gulf Coast by the federal government isviewed as a possible metaphor for current U.S. policies with respect toscience in general, and to global warming in particular.

“Land that sits below sea level. Levees and dams that stand against nature’s fury. Countryside that sinks more every year. New Orleans? No. Holland: a nation whose flood protections makes ours look primitive and slapdash”

John McQuaid, The Times-Picayune, November 13, 2005

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Barnett, T.P., Pierce, D.W., Achuta Rao, K.M., Gleckler, P.J., Santer, B.D., Gregory, J.M. & Washington, W.M., 2005. Penetration of human-induced warming into the world’s oceans. Science 309: 284287.Google Scholar
Boer, M.M., Koster, E.A. & Lundberg, H. 1990. Greenhouse impact in Fennoscandia – Preliminary findings of a European workshop on the effects of climatic change. Ambio 19: 210.Google Scholar
Bourne, J., 2000. Louisiana’s vanishing wetlands: Going, going ... Science 289: 18601863.10.1126/science.289.5486.1860Google Scholar
Britsch, L.D. & Dunbar, J.B., 1993. Land loss rates: Louisiana Coastal Plain. Journal of Coastal Research 9: 324338.Google Scholar
Costanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannan, B., Limburg, K., Naeem, S., O’Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. & Van den Belt, M., 1997. The value of the world’s ecosystem services and nature capital. Nature 387: 253260.10.1038/387253a0Google Scholar
Day, J.W. Jr. & Templet, P.H., 1989. Consequences of sea level rise: Implications from the Mississippi Delta. Coastal Management 17: 241257.10.1080/08920758909362088Google Scholar
Day, J.W. Jr., Boesch, D.F., Clairain, E.J., Kemp, G.P., Laska, S.B., Mitsch, W.J., Orth, K., Mashriqui, H., Reed, D.J., Shabman, L., Simenstad, C.A., Streever, B.J., Twilley, R.R., Watson, C.C., Wells, J.T. & Whigham, D.F., 2007. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science 315: 16791684.10.1126/science.1137030Google Scholar
Dixon, T.H., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka, R., Sella, G., Kim, S.-W., Wdowinski, S. & Whitman, D., 2006. Subsidence and ñooding in New Orleans. Nature 441: 587588.10.1038/441587aGoogle Scholar
Donnelly, J.P., Geary, P., Newby, P. & Ettinger, R., 2004. Coupling instrumental and geological records of sea-level change: Evidence from southern New England of an increase in the rate of sea-level rise in the late 19th century. Geophysical Research Letters 31: L05203, doi: 10.1029/2003GL018933.Google Scholar
Emanuel, K., 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436: 686688.10.1038/nature03906Google Scholar
Fischetti, M., 2001. Drowning New Orleans. Scientific American 285 (4): 7685.Google Scholar
Fisk, H.N. & McFarlan, E. Jr., 1955. Late Quaternary deltaic deposits of the Mississippi River. In: Poldervaart, A. (ed.): Crust of the earth. Geological Society of America Special Paper 62: 279302.Google Scholar
Gagliano, S.M., Meyer-Arendt, K.J. & Wicker, K.M., 1981. Land loss in the Mississippi River Deltaic Plain. Gulf Coast Association of Geological Societies Transactions 31: 295300.Google Scholar
Gehrels, W.R., Kirby, J.R., Prokoph, A., Newnham, R.M., Achterberg, E.P., Evans, H., Black, S. & Scott, D.B., 2005. Onset of recent rapid sea-level rise in the western Atlantic Ocean. Quaternary Science Reviews 24: 20832100.10.1016/j.quascirev.2004.11.016Google Scholar
Gerritsen, H., 2005. What happened in 1953? The Big Flood in the Netherlands in retrospect. Philosophical Transactions of the Royal Society A363: 12711291.Google Scholar
Gonzalez, J.L. & Tornqvist, T.E., 2006. Coastal Louisiana in crisis: Subsidence or sea level rise? Eos 87: 493, 498.Google Scholar
Groat, C., 2005. Hurricane Katrina and New Orleans: Ί told you so’ is not enough. Eos 86: 341.Google Scholar
Jelgersma, S., 1961. Holocene sea level changes in the Netherlands. Mededelingen van de Geologische Stichting, Serie C 6 (7): 1100.Google Scholar
Jonkman, S.N., Stive, M.J.F. & Vrijling, J.K., 2005. New Orleans is a lesson to the Dutch. Journal of Coastal Research 21 (6): xixii.10.2112/1551-5036(2005)21[xi:NOIALT]2.0.CO;2Google Scholar
Kabat, P., Van Vierssen, W., Veraart, J., Vellinga, P. & Aerts, J., 2005. Climate proofing the Netherlands. Nature 438: 283284.10.1038/438283aGoogle Scholar
King, O.A., 2004. Climate change science: Adapt, mitigate, or ignore? Science 303: 176177.10.1126/science.1094329Google Scholar
Koster, E.A., 1991. Assessment of climate change impact in high-latitudinal regions. Terra 103: 313.Google Scholar
Koster, E.A. & Nieuwenhuijzen, M.E., 1992. Permafrost response to climatic change, in: Boer, M. & Koster, E. (eds): Greenhouse-impact on cold-climate ecosystems and landscapes. Catena Supplement 22: 3758.Google Scholar
Lambeck, K., Anzidei, M., Antonioli, F., Benini, A. & Esposito, A., 2004. Sea level in Roman time in the Central Mediterranean and implications for recent change. Earth and Planetary Science Letters 224: 563575.10.1016/j.epsl.2004.05.031Google Scholar
Landsea, C.W., Harper, B.A., Hoarau, K. & Knaff, J.A., 2006. Can we detect trends in extreme tropical cyclones? Science 313: 452454.10.1126/science.1128448Google Scholar
Louisiana Coastal Wetlands Conservation and Restoration Task Force and the Wetlands Conservation and Restoration Authority, 1998. Coast 2050: Toward a sustainable coastal Louisiana. Louisiana Department of Natural Resources (Baton Rouge): 161 pp.Google Scholar
Meehl, G.A., Stocker, T.F., Collins, W.O., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kit oh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, L.G., Weaver, A.J. & Zhao, Z.-C., 2007. Global climate projections. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (eds): Climate change 2007. The physical science basis. Cambridge University Press (Cambridge): 747845.Google Scholar
Milne, G.A., Long, A.J. & Bassett, S.E., 2005. Modelling Holocene relative sea-level observations from the Caribbean and South America. Quaternary Science Reviews 24: 11831202.10.1016/j.quascirev.2004.10.005Google Scholar
Mitrovica, J.X. & Milne, G.A., 2002. On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quaternary Science Reviews 21: 21792190.10.1016/S0277-3791(02)00080-XGoogle Scholar
Mooney, C., 2005. The Republican war on science. Basic Books (New York): 342 pp.Google Scholar
Nelson, S.A. & Leclair, S.F., 2006. Katrina’s unique splay deposits in a New Orleans neighborhood. GSA Today 16 (9): 410.Google Scholar
Parry, M.L., Canziani, O.E., Palutikof, J.P., Van der Linden, P.J. & Hanson, C.E. (eds), 2007. Climate change 2007. Impacts, adaptation and vulnerability. Cambridge University Press (Cambridge): 976 pp.Google Scholar
Peltier, W.R., 1998. Postglacial variations in the level of the sea: Implications for climate dynamics and solid-earth geophysics. Reviews of Geophysics 36: 603689.10.1029/98RG02638Google Scholar
Penland, S. & Suter, J.R., 1988. Barrier island erosion and protection in Louisiana: A coastal geomorphological perspective. Gulf Coast Association of Geological Societies Transactions 38: 331342.Google Scholar
Reed, D.J. & Wilson, L., 2004. Coast 2050: A new approach to restoration of Louisiana coastal wetlands. Physical Geography 25: 421.10.2747/0272-3646.25.1.4Google Scholar
Saucier, R.T., 1963. Recent geomorphic history of the Pontchartrain Basin. Louisiana State University Press (Baton Rouge): 114 pp.Google Scholar
Seed, R.B., Bea, R.G. et al., 2006. Investigation of the performance of the New Orleans flood protection systems in Hurricane Katrina on August 29, 2005. www.ce.berkeley.edu/~new_orleans/.Google Scholar
Stanley, D.J. & Warne, A.G., 1993. Nile delta: Recent geological evolution and human impact. Science 260: 628634.10.1126/science.260.5108.628Google Scholar
Tidwell, M., 2006. The ravaging tide. Strange weather, future Katrinas, and the coming death of America’s coastal cities. Free Press (New York): 196 pp.Google Scholar
Tornqvist, T.E., Gonzalez, J.L., Newsom, L.A., Van der Borg, K. & De Jong, A.F.M., 2002. Reconstructing ‘background’ rates of sea-level rise as a tool for forecasting coastal wetland loss, Mississippi Delta. Eos 83: 525, 530-531.Google Scholar
Tornqvist, T.E., Gonzalez, J.L., Newsom, L.A., Van der Borg, K., De Jong, A.F.M. & Kurnik, C.W., 2004. Deciphering Holocene sea-level history on the U.S. Gulf Coast: A high-resolution record from the Mississippi Delta. Geological Society of America Bulletin 116: 10261039.10.1130/B2525478.1Google Scholar
Tornqvist, T.E., Bick, S.J., Van der Borg, K. & De Jong, A.F.M., 2006. How stable is the Mississippi Delta? Geology 34: 697700.10.1130/G22624.1Google Scholar
Toscano, M.A. & Macintyre, I.G., 2003. Corrected western Atlantic sea-level curve for the last 11,000 years based on calibrated 14C dates from Acropora palmata framework and intertidal mangrove peat. Coral Reefs 22: 257270.10.1007/s00338-003-0315-4Google Scholar
Van Beek, J.L. & Meyer-Arendt, K.J., 1982. Louisiana’s eroding coastline: Recommendations for protection. Louisiana Department of Natural Resources (Baton Rouge): 49 pp.Google Scholar
Van de Plassche, O/., 1982. Sea-level change and water-level movements in the Netherlands during the Holocene. Mededelingen Rijks Geologische Dienst 36: 193.Google Scholar
Van Heerden, I. & Bryan, M., 2006. The storm. What went wrong and why during Hurricane Katrina – the inside story from one Louisiana scientist. Viking (New York): 308 pp.Google Scholar
Vrijling, J.K., 2001. Probabilistic design of water defense systems in the Netherlands. Reliability Engineering and System Safety 74: 337344.10.1016/S0951-8320(01)00082-5Google Scholar
Webster, P.J., Holland, G.J., Curry, J.A. & Chang, H.-R., 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309: 18441846.10.1126/science.1116448Google Scholar