Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-29T01:44:47.759Z Has data issue: false hasContentIssue false

Facies and paleogeography of the Tertiary of the Lower Rhine Basin - sedimentary versus climatic control

Published online by Cambridge University Press:  01 April 2016

T. Utescher*
Affiliation:
Geologisches Institut, Nussallee 8, 53115 Bonn, Germany
V. Mosbrugger
Affiliation:
Institut für Geologie und Paläontologie der Universität Tübingen, 72119 Tübingen, Germany
A.R. Ashraf
Affiliation:
Institut für Geologie und Paläontologie der Universität Tübingen, 72119 Tübingen, Germany
*
3Corresponding author: Torsten Utescher; e-mail: utescher@geo.uni-bonn.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Based on recent studies, the impact of global sea-level and climate change on the paleogeographic and sedimentary evolution of the Tertiary of the Lower Rhine Basin is analysed. It is shown that major changes in global climate and sea-level, such as the high-stand during the Middle Miocene climate optimum, the extreme low-stands near the base of the Tortonian and within the Messinian, are clearly reflected in the sedimentary succession. Continental climate curves, as reconstructed from Tertiary macrofloras of the Lower Rhine Basin, can be correlated with the marine, long-term isotope record. As shown by the analyses, a warm and humid climate with mean annual temperatures above 13°C and mean annual precipitation not below 1000 mm, persisted throughout the Late Miocene to Early Pliocene. Continental, high-resolution, climate data show that Late Miocene alternations of lignites and elastics are rather caused by tectonic and sedimentary processes (such as the repeated migration of the river system) than by major climate changes.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Ashraf, A.R. & Mosbrugger, V., 1995. Palynologie und Palynostratigraphie in der Niederrheinischen Bucht. Teil 1: Sporen. Palaeontographica, Abteilung B 235: 61173.Google Scholar
Ashraf, A.R. & Mosbrugger, V., 1996. Palynologie und Palynostratigraphie in der Niederrheinischen Bucht. Teil 2: Pollen. Palaeontographica, Abteilung B. 241: 198.Google Scholar
Ashraf, A.R., Mosbrugger, V. & Utescher, T., 1997. Palynological studies in the Neogene of the open-pit mines Inden and Bergheim (Lower Rhine Embayment, Germany). Courier Forschungs-Institut Senckenberg 201: 2946.Google Scholar
Bertini, A., 1994. Palynological investigation on Upper Neogene and Lower Pleistocene sections in Central and Northern Italy. Memorie de la Società Geologica Italiana 48: 431443.Google Scholar
Buchardt, B., 1978. Oxygen isotope palaeotemperatures from the Tertiary period in the North Sea area. Nature 275: 121123.CrossRefGoogle Scholar
Gebka, M., Mosbrugger, V. Schilling, H.-D. & Utescher, T., 1999. Regional scale palaeoclimate modelling on soft proxy-data basis - an example from the Upper Miocene of the Lower Rhine Embayment. Palaeogeography, Palaeoclimatology, Palaeoecology 152:225258.CrossRefGoogle Scholar
Hager, H., 1993. The origin of the Tertiary lignite deposits in the Lower Rhine region, Germany. International Journal of Coal Geology 23: 251262.CrossRefGoogle Scholar
Hardenbol, J., Thierry, J., Farley, M.B., Thierry, J., de Graciansky, P.-C. & Vail, P.R., 1998. Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: Graciansky, P.-C., Hardenbol, J., Thierry, J. & Vail, P.R. (eds): Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM Special Publications 60: 314.Google Scholar
Kohnen, O., 1995. Palaeotemperatures from the Upper Oligocene of the North German Basin. Neues Jahrbuch der Geologie und Paläontologie, Abhandlungen 198: 233241.CrossRefGoogle Scholar
Menke, B., 1975. Vegetationsgeschichte und Florenstratigraphie Nordwestdeutschlands im Pliozän und Frühquartär, mit einem Beitrag zur Biostratigraphie des Weichselfrühglazials. Geologisches Jahrbuch A 26: 3151.Google Scholar
Miller, K.G., Fairbanks, R.G. and Montain, G.S., 1987. Tertiary oxygen isotope synthesis, sea level history and continental margin erosion. Paleoceanography 2: 119.CrossRefGoogle Scholar
Miller, K.G., Wright, J.D. & Fairbanks, R.G., 1991. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy and margin erosion. Journal of Geophysical Research 96: 68296848.CrossRefGoogle Scholar
Mörs, T., Schäfer, A. & Utescher, T., in press. Stratigraphy of the Cenozoic Lower Rhine Basin, north-western Germany. Newsletters on Stratigraphy.Google Scholar
Mosbrugger, V. & Utescher, T., 1997.The coexistence approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 134: 6186.CrossRefGoogle Scholar
Schäfer, A., Hilger, D., Gross, G. & von der Hocht, F., 1996. Cyclic sedimentation in Tertiary Lower Rhine Basin (Germany) the ‘Liegendrücken’ of the brown coal open cast Fortuna mine. Sedimentary Geology 103: 229247.CrossRefGoogle Scholar
Schäfer, A., Utescher, T. & von der Hocht, F., 1997. Klastische Sedimentsysteme im Tertiär der Niederrheinischen Bucht. Terra Nostra 97/3: 68113.Google Scholar
Schaeffer, R. & Spiegler, D., 1986. Neogene cooling events and glacial phases in the North Atlantic. Zeitschrift der deutschen geologischen Gesellschaft 137: 537552.CrossRefGoogle Scholar
Shackleton, N.J., Hall, M.A. & Pate, D., 1995. Pliocene stable isotope stratigraphy of Site 846. Proceedings ODP, Scientific Results 138:337353.Google Scholar
Teichmüller, M., 1974. Die Tektonische Entwicklung der Niederrheinischen Bucht. In: Illies, J.H. & Fuchs, K. (eds): Approaches to taphrogenesis. Schweizerbart (Stuttgart): 269285.Google Scholar
Utescher, T. Ashraf, A.R. & Mosbrugger, V. 1992. Zur Faziesentwicklung im Neogen der Niederrheinischen Bucht. In: KovarEder, J. (ed.): Palaeove’getational development in Europe. (Wien): 235243.Google Scholar
Utescher, T., Mosbrugger, V. & Ashraf, A.R., 2000. Terrestrial climate evolution in Northwest Germany over the last 25 million years. Palaios 15: 430449.2.0.CO;2>CrossRefGoogle Scholar
von der Brelie, G., 1968. Zur mikrofloristischen Schichtengliederung im rheinischen Braunkohlenrevier. Fortschritte in der Geologie von Rheinland undWestfalen 16: 85102.Google Scholar
Van Adrichem Boogaert, H.A.& Kouwe, W.F.P. 1997. Stratigraphie nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Mededelingen Rijks Geologische Dienst 50:137.Google Scholar
Zagwijn, W & Hager, H., 1987. Correlation of continental and marine Neogene deposits in the Southeastern Netherlands and the Lower Rhine district. Mededelingen van de Werkgroep voor Tertiaire en Kwartair Geologie 24 (1-2): 5978.Google Scholar