Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-09T03:22:14.062Z Has data issue: false hasContentIssue false

Recent movement pattern of the Lower Rhine Embayment from tilt, gravity and GPS data

Published online by Cambridge University Press:  01 April 2016

J. Campbell*
Affiliation:
Geodätisches Institut der Universität Bonn, Nussallee 17, 53115 Bonn, Germany
H.-J. Kümpel
Affiliation:
Geologisches Institut der Universität Bonn
M. Fabian
Affiliation:
Geologisches Institut der Universität Bonn
D. Fischer
Affiliation:
Geodätisches Institut der Universität Bonn, Nussallee 17, 53115 Bonn, Germany
B. Görres
Affiliation:
Geodätisches Institut der Universität Bonn, Nussallee 17, 53115 Bonn, Germany
Ch.J. Keysers
Affiliation:
Geodätisches Institut der Universität Bonn, Nussallee 17, 53115 Bonn, Germany Geologisches Institut der Universität Bonn
K. Lehmann
Affiliation:
Geologisches Institut der Universität Bonn
*
5corresponding author; e-mail: campbell@sn-geod-l.uni-bonn.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As part of the activities of the Collaborative Research Centre ‘SFB 350’, measurements of geodetic and geodynamic changes in the area of the Lower Rhine Embayment and the Rhenish Shield are being performed at different scales in space and time. Continuous borehole tilt measurements and repeated microgravimetric surveys yield information on the local stability of the ground and changes in horizontal gravity gradients that are both dominated by seasonal fluctuations. Results of more than seven years of regular GPS campaigns are discussed in terms of vertical and horizontal point motions. The most prominent motions are man-induced effects occurring in or near the browncoal mining areas, where groundwater withdrawal produces subsidence of up to 2.2 cm/y in the area under investigation. Horizontal and vertical motions at other GPS points are smaller by one order of magnitude and in most cases are only marginally detectable. The eastward motion of two points in the Bergisches Land and the westward motion of two points in the Eifel near the Belgian border may be interpreted as a result of the ongoing extension of the Cenozoic rift system in the western part of the Eurasian plate.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

Ahorner, L., 1975. Present-day Stress field and seismotectonic block movements along major fault zones in central Europe. Tectonophysics 29: 233249.Google Scholar
Beutler, G., Brockmann, E., Gurtner, W., Hugentobler, U., Mervart, L., Rothacher, M. & Verdun, A., 1994. Extended orbit modelling techniques at the CODE processing centre of the International GPS Service for Geodynamics (IGS) : theory and initial results. Manuscripta Geodaetica 19: 367386.Google Scholar
Bonatz, M., 1967. Der Gravitationseinfluß der Bodenfeuchtigkeit. Zeitschrift für Vermessungswesen 92: 135137.Google Scholar
Campbell, J. & Nothnagel, A., 1996. Bestimmung rezenter Krustenbewegungen im Europäischen VLBI-Netz. Zeitschrift für Vermessungswesen 121: 255263.Google Scholar
Campbell, J. & Nothnagel, A., 2000. Results of the VLBI Analyses of the first observation period in the European Crustal Motion Network. Journal of Geodynamics 30: 321326.Google Scholar
Chenevart, C.J. & Riesen, A., 1985. Possible Significance of Eurafrican wrench-fault zones: differential drift and driving mechanism. Bulletin of the Swiss Association of Petroleum Geologists and Engineers 51/121: 2358.Google Scholar
Christie, R.R., 1994. A New Geodetic Heighting Strategy for Great Britain. Survey Review 32: 328343.CrossRefGoogle Scholar
Fröhlich, H. & Müller, G., 1986. Leitnivellements und regionale Deformationsanalyse in Nordrhein-Westfalen. Vermessungswesen und Raumordnung 48: 119.Google Scholar
Görres, B., 1996a. Bestimmung von Höhenänderungen in regionalen Netzen mit dem Global Positioning System. Deutsche Geodätische Kommission, Reihe C, Nr. 461 (Frankfurt).Google Scholar
Görres, B., 1996b. Determination of Height Changes in Regional GPS Networks. Proceedings 11th Working Meeting on European VLBI for Geodesy and Astrometry, held at Göteborg, Sweden, Aug 22–23, 1996: 143152.Google Scholar
Görres, B. & Campbell, J., 1998. Bestimmung vertikaler Punktbewegungen mit GPS. Zeitschrift für Vermessungswesen 123: 222230.Google Scholar
Görres, B., Campbell, J. & Kotthoff, H., 1999. Vertical Ground Movements in the Lower Rhenish Embayment. Abstract in IUGG 99, Vol. A, 59, Birmingham.Google Scholar
Gubler, E. & Hornik, H. (eds), 1999. IAG/EUREF Publication No. 7/1 and No. 7/II, Reports on the EUREF-Symposium Bad Neue-nahr, June 10–13, 1998 and on the results of the European Vertical Reference Network GPS Campaign 97 (EUVN97), Mitt. Bundesamt f. Kartographie und Geodäsie (Frankfurt/Main).Google Scholar
Haas, R., Gueguen, E., Scherneck, H.-G., Nothnagel, A. & Campbell, J., 2000. Crustal Motion. Results derived from observations in the European Geodetic Network. Earth Planets Space 52, 759764.Google Scholar
Illies, H., 1975. Intraplate tectonics in stable Europe as related to plate tectonics in the Alpine system. Geologische Rundschau 64: 677699.CrossRefGoogle Scholar
Keysers, Ch., 2001. Erfassung von Schwereänderungen in zwei lokalen Netzen in der Niederrheinischen Bucht von 1998 bis 2000. Dissertation Universität Bonn. Shaker-Verlag Aachen: 157+XVIpp.Google Scholar
Keysers, Ch.J. & Kümpel, H.-J., 1999. Two local precise gravity networks in the Lower Rhine Embayment, Germany, submitted to: Cahiers du Centre Européen de Géodynamique et de Seismologie, Proc. Workshop on High Precision Gravity Measurements and 2nd GGP-Workshop, Munsbach castle, Luxembourg, March 24–26, 1999.Google Scholar
Klostermann, J., Kremers, J. & Röder, R., 1998. Rezente tektonische Bewegungen in der Niederrheinischen Bucht. Fortschritte in der Geologie von Rheinland und Westfalen 37: 557571.Google Scholar
Kümpel, H.J., Peters, J.A. & Bower, D.R., 1988. Nontidal tilt and water table variations in a seismically active region in Québec, Canada. Tectonophysics 152, 3/4: 253265.Google Scholar
Kümpel, H.J., Lehmann, K., Fabian, M. & Mentes, Gy., 2001. Point stability at shallow depths - experience from tilt measurements in the Lower Rhine Embayment, Germany, and implications for high resolution GPS and gravity recordings. Geophysical Journal International 146: 630644.Google Scholar
Lehmann, K., Mentes, Gy., Kümpel, H.-J. & Varga, P., 1998. Approaching local ground dynamics by measurements of ground tilt. In: Kahmen, H., Brückl, E. & Wunderlich, Th. (eds): Geodesy for Geotechnical and Structural Engineering. Inst. f. Landesvermessung u. Ingenieurgeodäsie, TUWien: 99104.Google Scholar
Lorenz, G.K., van Beusekom, W., Groenewoud, W. & Hofman, M., 1995. Geodetic determination of land subsidence in the Netherlands. In: Barends, , Brouwer, , Schröder, (eds), Land Subsidence. Bakema (Rotterdam).Google Scholar
Müller, G., 1990. Wiederholungsmessungen im nordrhein-west-fálischen Anteil des DHHN 1980–1985 und im Netz 2. Ordnung - Erfahrungen, erste Ergebnisse, Ausblick. Vermessungstechni-sche Rundschau, 52: 120130.Google Scholar
Quitzow, H.W. & Vahlensiek, O., 1955. Über pleistozäne Gebirgsbildung und rezente Krustenbewegungen in der Niederrheinischen Bucht. Geologische Rundschau 43: 5667.Google Scholar
Rothacher, M. & Mervart, L., 1996. Bernese GPS Software V4.0, Astronomical Institute University of Berne/Switzerland.Google Scholar
Sager, B., 1995. Erste Deformationsanalyse des Lagenetzes Dona-tussprung in der Kölner Bucht. Vermessungswesen und Raumordnung 57: 311319.Google Scholar
Schreiber, U. & Rotsch, S., 1998. Cenozoic block rotation according to a conjugate shear system in central Europe - indications from palaeomagnetic measurements. Tectonophysics 299: 111142.Google Scholar
Van den Berg, M.W., Groenewoud, W. Lorenz, G.K., Lubbers, P.J., Brus, D.J. & Kroonenberg, S.B., 1994. Patterns and velocities of recent crustal movements in the Dutch part of the Roer Valley rift system. Geologie en Mijnbouw 73: 157168.Google Scholar