Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-05T21:54:27.048Z Has data issue: false hasContentIssue false

Biology of Zinc and Biological Value of Dietary Organic Zinc Complexes and Chelates

Published online by Cambridge University Press:  14 December 2007

Johannes W. G. M. Swinkels
Affiliation:
Department of Animal Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA Research Institute for Pig Husbandry, P.O. Box 83, 5240 AB Rosmalen, The Netherlands
Ervin T. Kornegay
Affiliation:
Department of Animal Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Martin W. A. Verstegen
Affiliation:
Department of Animal Nutrition, Agricultural University of Wageningen, Haagsteeg 4, 6708 PM Wageningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Aggett, P. J. (1991). The assessment of zinc status: a personal view. Proceedings of the Nutrition Society 50, 917.CrossRefGoogle ScholarPubMed
Agricultural Research Council. (1981). The Nutrient Requirements of Pigs. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Antonson, D. L., Barak, A. J. & Vanderhoof, J. A. (1979). Determination of the site of zinc absorption in rat small intestine. Journal of Nutrition 109, 142147.CrossRefGoogle ScholarPubMed
Bartholomew, M. E., Tupper, R. & Wormall, A. (1959). Incorporation of 65Zn in the sub-cellular fractions of the liver and spontaneously occurring mammary tumours of mice after the injection of zinc-glycine containing 65Zn. Biochemical Journal 73, 256261.CrossRefGoogle Scholar
Bertoni, G., Watson, M. J., Savage, G. P. & Armstrong, D. G. (1976). [The movements of minerals in the digestive tract of dry and lactating Jersey cows. 2. Net movements of Cu, Fe, Mn and Zn.] Zootecnica e Nutrizione Animale 2, 185191.Google Scholar
Blakeborough, P. & Salter, D. N. (1987). The intestinal transport of zinc studied using brush-border-membrane vesicles from the piglet. British Journal of Nutrition 57, 4555.CrossRefGoogle ScholarPubMed
Bremner, I. (1983). The roles of metallothionein in the metabolism of copper and zinc. Annual Report of Studies in Animal Nutrition and Allied Sciences, Rowett Research Institute 39, 1328.Google Scholar
Bremner, I. & Beattie, J. H. (1990). Metallothionein and the trace minerals. Annual Review of Nutrition 10, 6383.CrossRefGoogle ScholarPubMed
Bronner, F. (1987). Intestinal calcium absorption: mechanisms and applications. Journal of Nutrition 117, 13471352.CrossRefGoogle ScholarPubMed
Cassens, R. G., Hoekstra, W. G., Faltin, E. C. & Briskey, E. J. (1967). Zinc content and subcellular distribution in red vs. white porcine skeletal muscle. American Journal of Physiology 212, 688692.CrossRefGoogle ScholarPubMed
Coppen, D. E. & Davies, N. T. (1987). Studies on the effects of dietary zinc dose on 65Zn absorption in vivo and on the effects of Zn status on 65Zn absorption and body loss in young rats. British Journal of Nutrition 57, 3544.CrossRefGoogle ScholarPubMed
Cossack, Z. T. (1986). Somatomedin-C and zinc status in rats as affected by Zn, protein and food intake. British Journal of Nutrition 56, 163169.CrossRefGoogle ScholarPubMed
Cousins, R. J. (1985). Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiological Reviews 65, 238309.CrossRefGoogle ScholarPubMed
Cousins, R. J. (1989). Theoretical and practical aspects of zinc uptake and absorption. In Mineral Absorption in the Monogastric GI Tract, pp. 312 [Dintzis, F. R. and Laszlo, J.A, editors]. New York, NY: Plenum Press.CrossRefGoogle Scholar
Cousins, R. J. & Lee-Ambrose, L. M. (1992). Nuclear zinc uptake and interactions and metallothionein gene expression are influenced by dietary zinc in rats. Journal of Nutrition 122, 5664.CrossRefGoogle ScholarPubMed
Crofton, R. W., Clapham, M., Humphries, W. R., Aggett, P. J. & Mills, C. F. (1983). Leucocyte and tissue zinc concentrations in the growing pig. Proceedings of the Nutrition Society 42, 128A (Abstr.).Google Scholar
Dahmer, E. J., Coleman, B. W., Grummer, R. H. & Hoekstra, W. G. (1972). Alleviation of parakeratosis in zinc deficient swine by high levels of dietary histidine. Journal of Animal Science 35, 11811189.CrossRefGoogle ScholarPubMed
Davies, N. T. (1980). Studies on the absorption of zinc by rat intestine. British Journal of Nutrition 43, 189203.CrossRefGoogle ScholarPubMed
Davies, N. T. & Reid, H. (1979). An evaluation of the phytate, zinc, copper, iron and manganese contents of, and Zn availability from, soya-based textured-vegetable-protein meat-substitutes or meat-extenders. British Journal of Nutrition 41, 579589.CrossRefGoogle ScholarPubMed
Dørup, I. & Clausen, T. (1991). Effects of magnesium and zinc deficiencies on growth and protein synthesis in skeletal muscle and the heart. British Journal of Nutrition 66, 493504.CrossRefGoogle ScholarPubMed
Dørup, I., Flyvbjerg, A., Everts, M. E. & Clausen, T. (1991). Role of insulin-like growth factor-1 and growth hormone in growth inhibition induced by magnesium and zinc deficiencies. British Journal of Nutrition 66, 505521.CrossRefGoogle ScholarPubMed
Droke, E. A., Spears, J. W., Armstrong, J. D., Kegley, E. B. & Simpson, R. B. (1993). Dietary zinc affects serum concentrations of insulin and insulin-like growth factor I in growing lambs. Journal of Nutrition 123, 1319.CrossRefGoogle ScholarPubMed
EI-Shobaki, F. A. & Srour, M. G. (1989). The influence of ascorbic acid and lactose on the interaction of iron with each of cobalt and zinc during intestinal absorption. Zeitschrift fur Ernährungswissenschaft 28, 310315.CrossRefGoogle Scholar
Evans, G. W. & Johnson, E. C. (1980 a). Zinc absorption in rats fed a low-protein diet and a low-protein diet supplemented with tryptophan or picolinic acid. Journal of Nutrition 110, 10761080.CrossRefGoogle ScholarPubMed
Evans, G. W. & Johnson, E. C. (1980 b). Zinc concentration of liver and kidneys from rat pups nursing dams fed supplemented zinc dipicolinate or zinc acetate. Journal of Nutrition 110, 21212124.CrossRefGoogle ScholarPubMed
Evans, G. W. & Johnson, E. C. (1980 c). Growth stimulating effect of picolinic acid added to rat diets. Proceeding of the Society for Experimental Biology and Medicine 165, 457461.CrossRefGoogle ScholarPubMed
Evans, G. W. & Johnson, P. E. (1979). Purification and characterization of a zinc-binding ligand in human milk. Federation Proceedings 38, 703.Google Scholar
Fairweather-Tait, S. J., Jackson, M. J., Fox, T. E., Wharf, S. G., Eagles, J. & Croghan, P. C. (1993). The measurement of exchangeable pools of zinc using the stable isotope 70Zn. British Journal of Nutrition 70, 221234.CrossRefGoogle ScholarPubMed
Fischer, P. W. F. & L'Abbe, M. R. (1985). Copper transport by intestinal brush border membrane vesicles from rats fed high zinc or copper deficient diets. Nutrition Research 5, 759767.CrossRefGoogle Scholar
Flanagan, P. R., Haist, J. & Valberg, L. S. (1983). Zinc absorption, intraluminal zinc and intestinal metallothionein levels in zinc-deficient and zinc-repleted rodents. Journal of Nutrition 113, 962972.CrossRefGoogle Scholar
Galdes, A. & Vallee, B. L. (1983). Categories of zinc metalloenzymes. In Zinc and its Role in Biology and Nutrition(Metal Ions in Biological Systems vol. 15), pp. 154 [Sigel, H. and Sigel, A., editors]. New York: Marcel Dekker, Inc.Google Scholar
Giroux, E. & Prakash, N. J. (1977). Influence of zinc-ligand mixtures on serum zinc levels in rats. Journal of Pharmaceutical Sciences 66, 391395.CrossRefGoogle ScholarPubMed
Giugliano, R. & Millward, D. J. (1984). Growth and zinc homeostasis in the severely Zn-deficient rat. British Journal of Nutrition 52, 545560.CrossRefGoogle ScholarPubMed
Giugliano, R. & Millward, D. J. (1987). The effects of severe zinc deficiency on protein turnover in muscle and thymus. British Journal of Nutrition 57, 139155.CrossRefGoogle ScholarPubMed
Golden, B. E. (1989). Zinc in cell division and tissue growth: physiological aspects. In Zinc in Human Biology, pp. 119128 [Mills, C. F., editor]. London: Springer-Verlag.CrossRefGoogle Scholar
Grace, N. D. (1975). Studies on the flow of zinc, cobalt, copper and manganese along the digestive tract of sheep given fresh perennial ryegrass, or white or red clover. British Journal of Nutrition 34, 7382.CrossRefGoogle ScholarPubMed
Grace, N. D. (1983). Amounts and distribution of mineral elements associated with fleece-free empty body weight gains in the grazing sheep. New Zealand Journal of Agricultural Research 26, 5970.CrossRefGoogle Scholar
Greene, L. W., Lunt, D. K., Byers, F. M., Chirase, N. K., Richmond, C. E., Knutson, R. E. & Schelling, G. T. (1988). Performance and carcass quality of steers supplemented with zinc oxide or zinc methionine. Journal of Animal Science 66, 18181823.CrossRefGoogle ScholarPubMed
Gupta, R. P., Verma, P. C. & Gupta, R. K. P. (1985). Experimental zinc deficiency in guinea-pigs: clinical signs and some haematological studies. British Journal of Nutrition 54, 421428.CrossRefGoogle ScholarPubMed
Hallmans, G., Nilsson, U., Sjöstrom, R., Wetter, L. & Wing, K. (1987). The importance of the body's need for zinc in determining Zn availability in food: a principle demonstrated in the rat. British Journal of Nutrition 58, 5964.CrossRefGoogle ScholarPubMed
Hambidge, K. M., Casey, C. E. & Krebs, N. F. (1986). Zinc In Trace Elements in Human and Animal Nutrition, 5th Edn, vol, 2, pp. 1137 [Mertz, W., editor]. London: Academic Press.Google Scholar
Hamilton, D. L., Bellamy, J. E. C., Valberg, J. D. & Valberg, L. S. (1978). Zinc, cadmium, and iron interactions during intestinal absorption in iron-deficient mice. Canadian Journal of Physiology and Pharmacology 56, 384389.CrossRefGoogle ScholarPubMed
Harmuth-Hoene, A. E. & Meuser, F. (1987). [Biological availabilty of zinc in whole-grain cereal products with various phytate contents.] Zeitschrift für Ernährungswissenschaft 26, 250267.CrossRefGoogle Scholar
Hempe, J. M. & Cousins, R. J. (1989). Effect of EDTA and zinc-methionine complex on zinc absorption by rat intestine. Journal of Nutrition 119, 11791187.CrossRefGoogle ScholarPubMed
Hempe, J. M. & Cousins, R. J. (1992). Cysteine-rich intestinal protein and intestinal metallothionein: an inverse relationship as a conceptual model for zinc absorption in rats. Journal of Nutrition 122, 8995.CrossRefGoogle ScholarPubMed
Hill, D. A., Peo, E. R. & Lewis, A. J. (1987). Influence of picolinic acid on the uptake of 65Zn-amino acid complexes by the everted rat gut. Journal of Animal Science 65, 173178.CrossRefGoogle Scholar
Hill, D. A., Peo, E. R., Lewis, A. J. & Crenshaw, J. D. (1986). Zinc-amino acid complexes for swine. Journal of Animal Science 63, 121130.CrossRefGoogle ScholarPubMed
Hoekstra, W. G., Faltin, E. C., Lin, C. W., Roberts, H. F. & Grummer, R. H. (1967). Zinc deficiency in reproducing gilts fed a diet high in calcium and its effect on tissue zinc and blood serum alkaline phosphatase. Journal of Animal Science 26, 13481357.CrossRefGoogle ScholarPubMed
Hoekstra, W. G., Lewis, P. K., Phillips, P. H. & Grummer, R. H. (1956). The relationship of parakeratosis, supplemental calcium and zinc to the zinc content of certain body components of swine. Journal of Animal Science 15, 752764.CrossRefGoogle Scholar
Hunt, J. R. & Johnson, L. K. (1992). Dietary protein, as egg albumen: effects on bone composition, zinc bioavailability and zinc requirements of rats, assessed by a modified broken-line model. Journal of Nutrition 122, 161169.CrossRefGoogle Scholar
Hunt, J. R. & Larson, B. J. (1990). Meal protein and zinc levels interact to influence zinc retention by the rat. Nutrition Research 10, 697705.CrossRefGoogle Scholar
Jackson, M. J. (1989). Physiology of zinc: general aspects. In Zinc in Human Biology, pp. 114 [Mills, C. F., editor]. London: Springer-Verlag.Google Scholar
Johanning, G. L., Browning, J. D., Bobilya, D. J., Veum, T. L. & O'Dell, B. L. (1990). Effect of zinc deficiency and food restriction in the pig on erythrocyte fragility and plasma membrane composition. Nutrition Research 10, 14631471.CrossRefGoogle Scholar
Kernkamp, H. C. H. & Ferrin, E. F. (1953). Parakeratosis in swine. Journal of American Veterinary Medical Association 123, 217220.Google ScholarPubMed
King, J. C. (1990). Assessment of zinc status. Journal of Nutrition 120, 14741479.CrossRefGoogle ScholarPubMed
Kornegay, E. T. & Thomas, H. R. (1975). Zinc-proteinate supplemented studied. Hog Farm Management (08), 5051.Google Scholar
Kratzer, F. H. & Vohra, P. (1986). Chelates in Nutrition. Boca Raton, FL: CRC Press, Inc.Google Scholar
Menard, M. P. & Cousins, R. J. (1983). Zinc transport by brush border membrane vesicles from rat intestine. Journal of Nutrition 113, 14341442.CrossRefGoogle ScholarPubMed
Menard, M. P., McCormick, C. C. & Cousins, R. J. (1981). Regulation of intestinal metallothionein biosynthesis in rats by dietary zinc. Journal of Nutrition 111, 13531361.CrossRefGoogle ScholarPubMed
Miller, E. R., Luecke, R. W., Ullrey, D. E., Baltzer, B. V., Bradley, B. L. & Hoefer, J. A. (1968). Biochemical, skeletal and allometric changes due to zinc deficiency in the baby pig. Journal of Nutrition 95, 278286.CrossRefGoogle ScholarPubMed
Miller, J. K. & Cragle, R. G. (1965). Gastrointestinal sites of absorption and endogenous secretion of zinc in dairy cattle. Journal of Dairy Science 48, 370373.CrossRefGoogle ScholarPubMed
Miller, J. K. & Jensen, L. S. (1966). Effect of dietary protein source on zinc absorption and excretion along the alimentary tracts of chicks. Poultry Science 45, 10511053.CrossRefGoogle ScholarPubMed
Miller, W. J., Neathery, M. W., Gentry, R. P., Blackmon, D. M. & Stake, P. E. (1974). Adaptations in zinc metabolism by lactating cows fed a low-zinc practical-type diet. In Trace Element Metabolism in Animals-2, pp. 550552 [Hoekstra, W. G., Suttie, J. W., Ganther, H. E. and Mertz, W., editors]. Baltimore, MD: University Park Press.Google Scholar
Morgan, D. P., Young, E. P., Earle, I. P., Davey, R. J. & Stevenson, J. W. (1969). Effects of dietary calcium and zinc on calcium, phosphorus and zinc retention in swine. Journal of Animal Science 29, 900905.CrossRefGoogle ScholarPubMed
National Research Council, Subcommittee on Zinc. (1979). Zinc. Baltimore, MD: University Park Press.Google Scholar
National Research Council. (1988). Nutrient Requirements of Swine, 10th ed. Washington, DC: National Academy Press.Google Scholar
O'Dell, B. L. (1984). Bioavailability of trace elements. Nutrition Reviews 42, 301308.CrossRefGoogle ScholarPubMed
O'Dell, B. L., Burpo, C. E. & Savage, J. E. (1972). Evaluation of zinc availability in foodstuffs of plant and animal origin. Journal of Nutrition 102, 653660.CrossRefGoogle ScholarPubMed
Oestreicher, P. & Cousins, R. J. (1989). Zinc uptake by basolateral membrane vesicles from rat small intestine. Journal of Nutrition 119, 639646.CrossRefGoogle ScholarPubMed
Owen, A. A., Peo, E. R., Cunningham, P. J. & Moser, B. D. (1973). Effect of EDTA on utilization of dietary zinc by G-F swine. Journal of Animal Science 37, 470478.CrossRefGoogle ScholarPubMed
Pallauf, J., Höhler, D. & Rimbach, G. (1992). [Effect of microbial phytase supplementation to a maize-soya diet on the apparent absorption of Mg, Fe, Cu, Mn and Zn and parameters of Zn status in piglets]. Journal of Animal Physiology and Nutrition 68, 19.CrossRefGoogle Scholar
Partridge, I. G. (1978). Studies on digestion and absorption in the intestines of growing pigs. 4. Effects of dietary cellulose and sodium levels on mineral absorption. British Journal of Nutrition 39, 539545.CrossRefGoogle ScholarPubMed
Pimentel, J. L., Cook, M. E. & Greger, J. L. (1991). Bioavailability of zinc-methionine for chicks. Poultry Science 70, 16371639.CrossRefGoogle Scholar
Prasad, A. S. (1988). Zinc in growth and development and specturum of human zinc deficiency. Journal of the American College of Nutrition 7, 377384.CrossRefGoogle ScholarPubMed
Prasad, A. S., Oberleas, D., Miller, E. R. & Luecke, R. W. (1971). Biochemical effects of zinc deficiency: changes in activities of zinc-dependent enzymes and ribonucleic acid and deoxyribonucleic acid content of tissues. Journal of Laboratory and Clinical Medicine 77, 144152.Google ScholarPubMed
Richards, M. P. (1989). Recent developments in trace element metabolism and function: role of metallothionein in copper and zinc metabolism. Journal of Nutrition 119, 10621070.CrossRefGoogle ScholarPubMed
Richards, M. P. & Cousins, R. J. (1975). Mammalian zinc homeostasis: requirement for RNA and metallothionein synthesis. Biochemical and Biophysical Research Communications 64, 12151223.CrossRefGoogle ScholarPubMed
Roth, H. P. & Kirchgessner, M. (1985). Utilization of zinc from picolinic or citric acid complexes in relation to dietary protein source in rats. Journal of Nutrition 115, 16411649.CrossRefGoogle ScholarPubMed
Roth-Bassell, H. A. & Clydesdale, F. M. (1991). The influence of zinc, magnesium, and iron on calcium uptake in brush border membrane vesicles. Journal of the American College of Nutrition 10, 4449.CrossRefGoogle ScholarPubMed
Schölmerich, J., Freudemann, A., Köttgen, E., Wietholz, H., Steiert, B., Löhle, B., Häussinger, D. & Gerok, W. (1987). Bioavailability of zinc from zinc-histidine complexes. I. Comparison with zinc sulfate in healthy men. American Journal of Clinical Nutrition 45, 14801486.CrossRefGoogle ScholarPubMed
Seal, C. J. & Heaton, F. W. (1983). Chemical factors affecting the intestinal absorption of zinc in vitro and in vivo. British Journal of Nutrition 50, 317324.CrossRefGoogle ScholarPubMed
Seal, C. J. & Heaton, F. W. (1985). Effect of dietary picolinic acid on the metabolism of exogenous and endogenous zinc in the rat. Journal of Nutrition 115, 986993.CrossRefGoogle Scholar
Seal, C. J. & Mathers, J. C. (1989). Intestinal zinc transfer by everted gut sacs from rats given diets containing different amounts and types of dietary fibre. British Journal of Nutrition 62, 151163.CrossRefGoogle ScholarPubMed
Seguin, C. & Hamer, D. H. (1987). Regulation in vitro of metallothionein gene binding factors. Science 235, 13831387.CrossRefGoogle ScholarPubMed
Shurson, G. C., Ku, P. K., Waxler, G. L., Yokoyama, M. T. & Miller, E. R. (1990). Physiological relationships between microbiological status and dietary copper levels in the pig. Journal of Animal Science 68, 10611071.CrossRefGoogle ScholarPubMed
Simons, P. C. M., Versteegh, H. A. J., Jongbloed, A. W., Kemme, P. A., Slump, P., Bos, K. D., Wolters, M. G. E., Breudeker, R. F. & Verschoor, G. J. (1990). Improvement of phosphorus availability by microbial phytase in broilers and pigs. British Journal of Nutrition 64, 525540.CrossRefGoogle ScholarPubMed
Smith, D. W. (1990). Inorganic Substances. Cambridge: University Press.CrossRefGoogle Scholar
Solomons, N. W. & Jacob, R. A. (1981). studies on the bioavailability of zinc in humans: effects of heme and nonheme iron on the absorption of zinc. American Journal of Clinical Nutrition 34, 475482.CrossRefGoogle ScholarPubMed
Solomons, N. W., Pineda, O., Viteri, F. & Sandstead, H. H. (1983). Studies on the bioavailability of zinc in humans: mechanism of the intestinal interaction of nonheme iron and zinc. Journal of Nutrition 113, 337349.CrossRefGoogle ScholarPubMed
Southon, S., Gee, J. M., Bayliss, C. E., Wyatt, G. M., Horn, N. & Johnson, I. T. (1986). Intestinal microflora, morphology and enzyme activity in zinc-deficient and Zn-supplemented rats. British Journal of Nutrition 55, 603611.CrossRefGoogle ScholarPubMed
Spears, J. W. (1989). Zinc methionine for ruminants: relative bioavailability of zinc in lambs and effects of growth and performance of growing heifers. Journal of Animal Science 67, 835843.CrossRefGoogle ScholarPubMed
Spears, J. W. & Kegley, E. B. (1991). Effect of zinc and manganese methionine on performance of beef cows and calves. Journal of Animal Science 69 Suppl. 1, 59.Google Scholar
Spears, J. W., Kegley, E. B. & Ward, J. D. (1991). Bioavailability of organic, inorganic trace minerals explored. Feedstuffs (11), 1220.Google Scholar
Spray, C. M. & Widdowson, E. M. (1950). The effect of growth and development on the composition of mammals. British Journal of Nutrition 4, 332352.CrossRefGoogle ScholarPubMed
Starcher, B. C., Glauber, J. G. & Madaras, J. G. (1980). Zinc absorption and its relationship to intestinal metallothionein. Journal of Nutrition 110, 13911397.CrossRefGoogle ScholarPubMed
Steel, L. & Cousins, R. J. (1985). Kinetics of zinc absorption by luminally and vascularly perfused rat intestine. American Journal of Physiology 248, G46G53.Google ScholarPubMed
Stryer, L. (1988). Biochemistry, 3rd ed. New York, NYW. H. Freeman and Co.Google Scholar
Sturniolo, G. C., Montino, C., Rossetto, L., Martin, A., D'inca, R., D'Odorico, A. & Naccarato, R. (1991). Inhibition of gastric acid secretion reduces zinc absorption in man. Journal of American College of Nutrition 10, 372375.CrossRefGoogle ScholarPubMed
Swinkels, J. W. G. M., Kornegay, E. T., Zhou, W., Lindemann, M. D., Webb, K. E. & Verstegen, M. W. A. (1994 a). Effectiveness of a zinc amino acid chelate and zinc sulfate in repleting serum and soft tissue zinc pools when fed to zinc depleted pigs. Journal of Animal Science, submitted.Google Scholar
Swinkels, J. W. G. M., Kornegay, E. T., Zhou, W., Lindemann, M. D., Webb, K. E. & Verstegen, M. W. A. (1994 b). In vivo asessment of rate and apparent zinc, copper and iron absorption as affected by Zn source using Zn depleted pigs. Journal of Animal Science, submitted.Google Scholar
Swinkels, J. W. G. M., Kornegay, E. T., Zhou, W., Wong, E. A., Lindemann, M. D. & Verstegen, M. W. A. (1994 c). Serum mitogenic activity, total pituitary RNA and growth hormone mRNA concentrations of experimentally zinc depleted pigs. Journal of Nutrition (In press).Google Scholar
Tacnet, F., Watkins, D. W. & Ripoche, P. (1990). Studies of zinc transport into brush-border membrane vesicles isolated from pig small intestine. Biochimica et Biophysica Acta 1024, 323330.CrossRefGoogle ScholarPubMed
Todd, W. R., Elvenhjem, C. A. & Hart, E. B. (1934). Zinc in the nutrition of the rat. American Journal of Physiology 107, 146156.CrossRefGoogle Scholar
Tucker, H. F. & Salmon, W. D. (1955). Parakeratosis or zinc deficiency disease in the pig. Proceedings of the Society for Experimental Biology and Medicine 88, 613616.CrossRefGoogle ScholarPubMed
Underwood, E. J. (1977). Trace Elements in Human and Animal Nutrition, 4th ed. London: Academic Press.Google Scholar
van Campen, D. R. & Mitchell, E. A. (1965). Absorption of Cu64, Zn65, Mo99, and Fe59 from ligated segments of the rat gastrointestinal tract. Journal of Nutrition 86, 120124.CrossRefGoogle Scholar
Vasak, M. & Kägi, J. H. R. (1983). Spectroscopic properties of metallothionein. In Zinc and its Role in Biology and Nutrition (Metal Ions in Biological Systems vol. 15), pp. 213273 [Sigel, H. and Sigel, A., editors]. New York, NY: Marcel Dekker, Inc.Google Scholar
Verma, P. C., Gupta, R. P., Sadana, J. R. & Gupta, R. K. P. (1988). Effect of experimental zinc deficiency and repletion on some immunological variables in guinea-pigs. British Journal of Nutrition 59, 149154.CrossRefGoogle ScholarPubMed
Wapnir, R. A., Garcia-Aranda, J. A., Mevorach, D. E. K. & Lifshitz, F. (1985). Differential absorption of zinc and low-molecular-weight ligands in the rat gut in protein-energy malnutrition. Journal of Nutrition 115, 900908.CrossRefGoogle ScholarPubMed
Wapnir, R. A. & Stiel, L. (1986). Zinc intestinal absorption in rats: specificity of amino acids as ligands. Journal of Nutrition 116, 21712179.CrossRefGoogle ScholarPubMed
Wapnir, R. A., Stiel, L. & Lee, S.-Y. (1989). Zinc intestinal absorption: effect of carbohydrates. Nutrition Research 9, 12771284.CrossRefGoogle Scholar
Wedekind, K. J. & Baker, D. H. (1990). Zinc bioavailability in feed-grade sources of zinc. Journal of Animal Science 68, 684689.CrossRefGoogle ScholarPubMed
Wedekind, K. J., Hortin, A. E. & Baker, D. H. (1992). Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate and zinc oxide. Journal of Animal Science 70, 178187.CrossRefGoogle ScholarPubMed
Williams, R. J. P. (1984). Zinc: what is its role in biology? Endeavour 8, 6570.CrossRefGoogle ScholarPubMed
Williams, R. J. P. (1989). An introduction to the biochemistry of zinc. In Zinc in Human Biology, pp. 1531 [Mills, C. F., editor]. London: Springer-Verlag.CrossRefGoogle Scholar
Wu, D. Y.-H. & Wu, C.-W. (1983). The role of zinc in DNA and RNA polymerases. In Zinc and its Role in Biology and Nutrition (Metal Ions in Biological Systems vol. 15), pp. 157192 [Sigel, H. and Sigel, A., editors]. New York, NY: Marcel Dekker, Inc.Google Scholar
Yasodhara, P., Ramaraju, L. A. & Raman, L. (1991). Trace minerals in pregnancy. 1. Copper and zinc. Nutrition Research 11, 1521.CrossRefGoogle Scholar
Zhou, W., Kornegay, E. T., Lindemann, M. D., Swinkels, J. W. G. M., Welten, M. K. & Wong, E. A. (1994). Stimulation of growth by intravenous injection of copper in weanling pigs. Journal of Animal Science (In press).CrossRefGoogle ScholarPubMed