Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T00:48:11.926Z Has data issue: false hasContentIssue false

Abnormalities as natural experiments: a morphogenetic model for coiling regulation in planispiral ammonites

Published online by Cambridge University Press:  08 February 2016

Antonio G. Checa
Affiliation:
Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s/n, Granada 18071, Spain. E-mail: acheca@ugr.es
Takashi Okamoto
Affiliation:
Department of Earth Sciences, Faculty of Science, Ehime University, Bunkyo-Cho 2-5, Matsuyama 790, Japan. E-mail: okamoto@sci.ehime-u.ac.jp
Helmut Keupp
Affiliation:
Institut für Paläontologie, Freie Universität, Malteserstraße 74-100, Berlin 12249, Germany. E-mail: keupp@zedat.fu-berlin.de

Abstract

Exceptional examples of planispiral ammonites that were infested by epizoans during life display alterations of their normal coiling. Most commonly, the epizoan(s) settled on the venter of the ammonite and constituted an obstacle for the whorl tube grown one whorl later; this caused lateral deviation of the whorl tube and tilting of the ammonoid because of changes in the hydrostatic condition; from here on, the whorl tube periodically crossed the venter of the preceding whorl, thereby producing a zigzag coiling pattern. Some epizoans, which were particularly centered on the midventer, provoked detachment between whorls. In a few cases, lateral placement of the epizoan did not directly obstruct the normal growth path of the ammonite but induced a trochospiral coiling pattern. Both the zigzag and the trochospiral pattern were created when the ammonite tried to maintain the growth direction within the vertical plane at the same time as whorls remained in contact along a differentiated dorsal epithelium. The aperture reacted to changes in growth direction, to maintain also a permanent angle with the vertical direction. Growth direction, then, was a major morphogenetic parameter in ammonites, because it contained the necessary instructions for correct shell coiling. The model based on the observation of fabricational defects has been tested by a theoretical model by which the different situations so far observed are simulated and in which the parameters are the morphogenetic instructions inferred to have been present in the biological system.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bayer, U. 1972. Ontogenie der liassischen Ammonitengattung Bifericeras. Paläontologische Zeitschrift 46:225241.CrossRefGoogle Scholar
Checa, A. 1995. A model for the morphogenesis of ribs in ammonites inferred from associated microsculptures. Palaeontology 37:863888.Google Scholar
Checa, A., and Jiménez-Jiménez, A. P. 1997. Regulation of spiral growth in planorbid gastropods. Lethaia 30:257269.CrossRefGoogle Scholar
Checa, A., Jiménez-Jiménez, A. P., and Rivas, P. 1998. Regulation of spiral coiling in the terrestrial gastropod Sphincterochila: an experimental test of the Road-Holding Model. Journal of Morphology 235:249257.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Dietze, V., and Chandler, R. B. 1996. Dorset für Fossiliensammler. Fossilien 1996:233246.Google Scholar
Fraas, O. 1863. Abnormitäten bei Ammoniten. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 19:111113.Google Scholar
Guex, J. 1967. Contribution à l'étude des blessures chez les ammonites. Bulletin des Laboratoires de Géologie, Minéralogie, Géophysique et du Musée Géologique de l'Université de Lausanne 165:116.Google Scholar
Hutchinson, J. M. C. 1989. Control of gastropod shell shape: the role of the preceding whorl. Journal of theoretical Morphology 140:431444.Google Scholar
Keupp, H. 1984. Pathologische Ammoniten: Kuriositäten oder paläobiologische Dokumente? Fossilien 1984:258275.Google Scholar
Keupp, H. 1985. Pathologische Ammoniten: Kuriositäten oder paläobiologische Dokumente? Teil 2. Fossilien 1985:2335.Google Scholar
Keupp, H. 1992. Wachstumsstörungen bei Pleuroceras und anderen Ammonoidea durch Epökie. Berliner Geowissenschaftliche Abhandlungen E 3:113119.Google Scholar
Keupp, H. 1996. Paläopathologische Analyse einer Ammoniten-Vergesellschaftung aus dem Oberjura Westsibiriens. Fossilien 1996:4554.Google Scholar
Keupp, H., Röper, M., and Seilacher, A. 1999. Paläobiologische Aspekte von syn vivo-besiedelten Ammonoideen im Plattenkalk des oberen Kimmeridgiums von Brunn in Ostbayern. Berliner Geowissenschaftliche Abhandlungen E 30:121145.Google Scholar
Lange, W. 1932. Über Symbiosen von Serpula mit Ammoniten im unteren Lias Norddeutschlands. Zeitschift der Deutschen Geologischen Gesellschaft 84:229234.Google Scholar
McGhee, G. R. 1999. Theoretical morphology: the concept and its applications. Columbia University Press, New York.Google Scholar
Merkt, J. 1966. Über Austern und Serpeln als Epöken auf Ammonitengehäusen. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 125:467479.Google Scholar
Okamoto, T. 1988a. Analysis of heteromorph ammonites by differential geometry. Palaeontology 31:3552.Google Scholar
Okamoto, T. 1988b. Changes in life orientation during the ontogeny of some heteromorph ammonoids. Palaeontology 31:281294.Google Scholar
Okamoto, T. 1988c. Developmental regulation and morphological saltation in the heteromorph ammonite Nipponites. Paleobiology 14:272286.CrossRefGoogle Scholar
Philippi, E. 1899. Über ein interessantes Vorkommen von Placunopsis ostracina v. SCHLOTH. Zeitschrift der Deutschen Geologischen Gesellschaft 51:6769.Google Scholar
Quenstedt, F. A. 1883–1885. Die Ammoniten des Schwäbischen Jura, Band I. Der schwarze Jura. Schweizerbart'sche, Stuttgart.Google Scholar
Schindewolf, O. H. 1934. Über Ëpoken auf Cephalopoden-Gehäusen. Paläontologische Zeitschrift 16:1531.CrossRefGoogle Scholar
Seilacher, A. 1960. Epizoans as a key to ammonoid ecology. Journal of Paleontology 34:189193.Google Scholar
Seilacher, A. 1973. Fabricational noise in adaptive morphology. Systematic Zoology 22:451465.CrossRefGoogle Scholar
Trueman, A. E. 1941. The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite. Quarterly Journal of the Geological Society of London 96:339383.CrossRefGoogle Scholar