Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-18T18:48:46.324Z Has data issue: false hasContentIssue false

Dinosaur body temperatures: the occurrence of endothermy and ectothermy

Published online by Cambridge University Press:  08 April 2016

Frank Seebacher*
Affiliation:
School of Biological Sciences, A08, The University of Sydney, New South Wales 2006, Australia. E-mail: fseebach@bio.usyd.edu.au

Abstract

Despite numerous studies, the thermal physiology of dinosaurs remains unresolved. Thus, perhaps the commonly asked question whether dinosaurs were ectotherms or endotherms is inappropriate, and it is more constructive to ask which dinosaurs were likely to have been endothermic and which ones ectothermic. Field data from crocodiles over a large size range show that body temperature fluctuations decrease with increasing body mass, and that average daily body temperatures increase with increasing mass. A biophysical model, the biological relevance of which was tested against field data, was used to predict body temperatures of dinosaurs. However, rather than predicting thermal relations of a hypothetical dinosaur, the model considered correct paleogeographical distribution and climate to predict the thermal relations of a large number of dinosaurs known from the fossil record (>700). Many dinosaurs could have had “high” (>30°) and stable (daily amplitude >2°) body temperatures without metabolic heat production even in winter, so it is unlikely that selection pressure would have favored the evolution of elevated resting metabolic rates in those species. Recent evidence of ontogenetic growth rates indicates that even the juveniles of large species (3000–4000 kg) could have had biologically functional body temperature ranges during early development. Smaller dinosaurs (<100 kg) at mid to high latitudes (>45°) could not have had high and stable body temperatures without metabolic heat production. However, elevated metabolic rates were unlikely to have provided selective advantage in the absence of some form of insulation, so probably insulation was present before endothermy evolved, or else it coevolved with elevated metabolic rates. Superimposing these findings onto a phylogeny of the Dinosauria suggests that endothermy most likely evolved among the Coelurosauria and, to a lesser extent, among the Hypsilophodontidae, but not among the Stegosauridae, Nodosauridae, Ankylosauridae, Hadrosauridae, Ceratopsidae, Prosauropoda, and Sauropoda.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Azuma, Y., and Currie, P. J. 1995. A new giant dromaeosaurid from Japan. Journal of Vertebrate Paleontology 15:17A.Google Scholar
Bakken, G. S., and Gates, D. M. 1976. Heat transfer analysis of animals: some implications for field ecology, physiology, and evolution. Pp. 255290in Gates, D. M. and Schmerl, R. B., eds. Perspectives of biophysical ecology. Springer, New York.Google Scholar
Bakker, R. T. 1972. Anatomical and ecological evidence of endothermy in dinosaurs. Nature 238:8185.Google Scholar
Bardossy, G. 1996. Carboniferous to Jurassic bauxite deposits as paleoclimate and paleogeographic indicators. Canadian Society of Petroleum Geologists Memoir 17:283293.Google Scholar
Barrett, P. M., Hailu, Y., Upchurch, P., and Burton, A. C. 1998. A new ankylosaurian dinosaur (Ornithischia: Ankylosauria) from the Upper Cretaceous of Shanxi Province, People's Republic of China. Journal of Vertebrate Paleontology 18:376384.Google Scholar
Barrick, R. E., and Showers, W. J. 1994. Thermophysiology of Tyrannosaurus rex: Evidence from oxygen isotopes. Science 265:222224.Google Scholar
Barrick, R. E., Stoskopf, M. K., Marcot, J. D., Russell, D. A., and Showers, W. J. 1998. The thermoregulatory functions of the Triceratops frill and horns: heat flow measured with oxygen isotopes. Journal of Vertebrate Paleontology 18:746750.Google Scholar
Barron, E. J. 1983. A warm equable Cretaceous: the nature of the problem. Earth-Science Reviews 19:305338.Google Scholar
Barron, E. J. 1995. Tropical climate stability and implications for the distribution of life. Pp. 108117in Stanley, S. M., ed. Effects of past global change on life. National Academy Press Studies in Geophysics, Washington, D.C.Google Scholar
Bennett, A. F., and Ruben, J. A. 1979. Endothermy and activity in vertebrates. Science 206:649654.Google Scholar
Benton, M. J., Cook, E., Grigorescu, D., Popa, E., and Tallódi, E. 1997. Dinosaurs and other tetrapods in an Early Cretaceous bauxite-filled fissure, northwestern Romania. Palaeogeography, Palaeoclimatology, Palaeoecology 130:275292.Google Scholar
Benton, M. J., Juul, L., Storrs, G. W., and Galton, P. M. 2000. Anatomy and systematics of the prosauropod dinosaur Thecodontosaurus antiquus from the Upper Triassic of southwest England. Journal of Vertebrate Paleontology 20:77108.Google Scholar
Bowman, H. F., Cravalho, E. G., and Woods, M. 1978. Theory, measurement, and application of thermal properties of bio-materials. Annual Review of Biophysics and Bioengineering 4:4380.Google Scholar
Brett-Surman, M. K. 1997. Ornithopods. Pp. 330346in Farlow, and Brett-Surman, 1997.Google Scholar
Buffetaut, E., Suteethorn, V., and Tong, H. 1996. The earliest known tyrannosaur from the Lower Cretaceous of Thailand. Nature 381:689691.Google Scholar
Calvo, J. O., and Bonaparte, J. F. 1991. Andesaurus delgadoi gen et sp. nov. (Saurischia-Sauropoda), dinosaurio titanosauridae de le formacion Rio Limay (Albiano-Cenomaniano), Neuquén, Argentina. Ameghiniana 28:303310.Google Scholar
Carpenter, K., Miles, C., and Cloward, K. 1998. Skull of a Jurassic ankylosaur (Dinosauria). Nature 393:782783.Google Scholar
Carslaw, H. S., and Jaeger, J. C. 1995. Conduction of heat in solids. Clarendon, Oxford.Google Scholar
Chatterjee, S. 1993. Shuvosaurus, a new theropod. National Geographic Research and Exploration 9:274285.Google Scholar
Chen, P., Dong, Z., and Zhen, S. 1998. An exceptionally well-preserved theropod dinosaur from the Yixian Formation of China. Nature 391:147152.Google Scholar
Chinsamy, A., Chiappe, L. M., and Dodson, P. 1994. Growth rings in Mesozoic birds. Nature 368:196197.Google Scholar
Colbert, E. H., Cowles, R. B., and Bogert, C. M. 1946. Temperature tolerances in the American alligator and their bearing on the habits, evolution, and extinction of the dinosaurs. Bulletin of the American Museum of Natural History 86:329373.Google Scholar
Coria, R. A., and Currie, P. J. 1997. A new theropod from the Rio Limay Formation. Journal of Vertebrate Paleontology 17:40A.Google Scholar
Coria, R. A., and Salgado, L. 1995. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature 377:224226.CrossRefGoogle Scholar
Coria, R. A., and Salgado, L. 1996. A basal iguanodontian (Ornithischia: Ornithopoda) from the Late Cretaceous of South America. Journal of Vertebrate Paleontology 16:445457.Google Scholar
Crawford, D. L., Pierce, V A., and Segal, J. A. 1999. Evolutionary physiology of closely related taxa: analyses of enzyme expression. American Zoologist 39:389400.CrossRefGoogle Scholar
Currie, P. J., and Zhao, X. 1993. A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People's Republic of China. Canadian Journal of Earth Sciences 30:20372081.Google Scholar
Currie, P. J., Godfrey, S. J., and Nessov, L. 1993. New caenagnathid (Dinosauria: Theropoda) specimens from the Upper Cretaceous of North America and Asia. Canadian Journal of Earth Sciences 30:22552272.CrossRefGoogle Scholar
Czerkas, S. A. 1997. Skin. Pp. 669675in Currie, P. J. and Padian, K., eds. The encyclopedia of dinosaurs. Academic Press, San Diego.Google Scholar
Dal Sasso, C., and Signore, M. 1998. Exceptional soft-tissue preservation in a theropod dinosaur from Italy. Nature 392:383387.Google Scholar
Daniels, C. B., and Pratt, J. 1992. Breathing in long necked dinosaurs: did the sauropods have bird lungs? Comparative Biochemistry and Physiology 101A:4346.Google Scholar
Dodson, P. 2000. Origin of birds: the final solution? American Zoologist 40:504512.Google Scholar
Dong, Z. 1993. A new species of stegosaur (Dinosauria) from the Ordos Basin, Inner Mongolia, People's Republic of China. Canadian Journal of Earth Sciences 30:21742176.Google Scholar
Dunham, A. E., Overall, K. L., Porter, W. P., and Forster, C. A. 1989. Implications of ecological energetics and biophysical and developmental constraints for life-history variation in dinosaurs. Pp. 119in Farlow, J. O., ed. Paleobiology of the dinosaurs. Geological Society of America Special Paper 238. Boulder, Colorado.Google Scholar
Else, P. L., and Hulbert, A. J. 1981. Comparison of the “mammal machine” and the “reptile machine”: energy production. American Journal of Physiology 240.R3R9.Google Scholar
Else, P. L., and Hulbert, A. J. 1987. Evolution of mammalian endothermic metabolism: “leaky” membranes as a source of heat. American Journal of Physiology 253:R1R7.Google Scholar
Elsey, R. M., Joanen, T., McNease, L., and Kinler, N. 1992. Growth rates and body condition factors of Alligator mississippiensis in coastal Louisiana wetlands: a comparison of wild and farm-released juveniles. Comparative Biochemistry and Physiology 103A:667672.Google Scholar
Elsey, R. M., McNease, L., and Joanen, T. 2001. Louisiana's alligator ranching program: a review and analysis of releases of captive-raised juveniles. Pp. 426442in Grigg, G. C., Seebacher, F., and Franklin, C. E., eds. Crocodilian biology and evolution. Surrey Beatty, Chipping Norton, Australia.Google Scholar
Embry, A. F., Beauchamp, B., and Glass, D. J., eds. 1994. Pangea: global environments and resources. Canadian Society of Petroleum Geologists Memoir 17.Google Scholar
Erickson, G. M., Rogers, K. C., and Yerby, S. A. 2001. Dinosaurian growth patterns and rapid avian growth rates. Nature 412:429433.Google Scholar
Farlow, J. O. 1990. Dinosaur energetics and thermal biology. Pp. 4355in Weishampel, D. B., Dodson, P., and Osmolska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar
Farlow, J. O. 1993. On the rareness of big, fierce animals: speculations about the body sizes, population densities, and geographic ranges of predatory mammals and large carnivorous dinosaurs. Journal of Science 293A:167199.Google Scholar
Farlow, J. O., and Brett-Surman, M. K. 1997. The complete dinosaur. Indiana University Press, Bloomington.Google Scholar
Farlow, J. O., Dodson, P., and Chinsamy, A. 1995. Dinosaur biology. Annual Review of Ecology and Systematics 26:445471.Google Scholar
Farmer, C. G. 2000. Parental care: the key to understanding endothermy and other convergent features in birds and mammals. American Naturalist 155:326334.CrossRefGoogle ScholarPubMed
Frakes, L. A., Probst, J.-L., and Ludwig, W. 1994. Latitudinal distribution of paleotemperature on land and sea from early Cretaceous to middle Miocene. Comptes Rendus de l'Académie des Sciences de Paris, série II, Géosciences de Surface 318:12091218.Google Scholar
Francis, J. E. 1994. Palaeoclimate of Pangea: geological evidence. Pp. 265274in Embry, et al. 1994.Google Scholar
Gabunia, L. K., Mchedlidze, G., Chkhikvadze, V. M., and Lucas, S. G. 1998. Jurassic sauropod dinosaur from the Republic of Georgia. Journal of Vertebrate Paleontology 18:233236.Google Scholar
Galton, P. M. 1974. The ornithischian dinosaur Hypsilophodon from the Wealden of the Isle of Wight. Bulletin of the British Museum (Natural History), Geology 25:1152.Google Scholar
Gasparini, Z., Pereda-Suberbiola, X., and Molnar, R. E. 1996. New data on the ankylosaurian dinosaur from the Late Cretaceous of the Antarctic peninsula. Memoirs of the Queensland Museum 39:583594.Google Scholar
Gillette, D. D. 1991. Seismosaurus halli, gen. et sp. nov., a new sauropod dinosaur from the Morrison formation (Upper Jurassic/Lower Cretaceous) of New Mexico, USA. Journal of Vertebrate Paleontology 11:417433.Google Scholar
Godefroit, P., Dong, Z., Bultynck, P., Li, H., and Feng, L. 1998. Cretaceous dinosaurs and mammals from Inner Mongolia 1. New Bactrosaurus (Dinosauria: Hadrosauridae) material from Iren Dabasu (Inner Mongolia, P. R. China). Bulletin de l'Institut Royal des Sciences Naturelles de Belgique (Sciences de la Ter-re) 68(Suppl):370.Google Scholar
Golonka, J., Ross, M. I., and Scotese, C. R. 1994. Phanerozoic, paleogeographic and paleoclimatic modeling maps. Pp. 147in Embry, et al. 1994.Google Scholar
Graham, S. A., Hendrix, M. C., Barsbold, R., Badamgarav, D., Sjostrom, D., Kirschner, W., and McIntosh, J. S. 1997. Stratigraphic occurrence, paleoenvironment, and description of the oldest known dinosaur (Late Jurassic) from Mongolia. Palaios 12:292297.Google Scholar
Grigg, G. C., and Seebacher, F. 1999. Field test of a paradigm: hysteresis of heart rate in thermoregulation by a free-ranging lizard (Pogona barbata). Proceedings of the Royal Society of London B 266:12911297.Google Scholar
Grigg, G. C., Seebacher, F., Beard, L. A., and Morris, D. 1998. Thermal relations of large crocodiles, Crocodylus porosus, free-ranging in a naturalistic situation. Proceedings of the Royal Society of London B 265:17931799.Google Scholar
Halliday, D., and Resnick, R. 1978. Physics. Wiley, New York.Google Scholar
Hammer, W. R., and Hickerson, W. J. 1994. A crested theropod dinosaur from Antarctica. Science 264:828830.Google Scholar
Hayes, J. P., and Garland, T. jr. 1995. The evolution of endothermy: testing the aerobic capacity model. Evolution 49:836847.Google Scholar
Heckert, A. B., Lucas, S. G., and Hunt, A. P. 1994. A late Carnian theropod from New Mexico: implications for the early evolution of Theropoda. Journal of Vertebrate Paleontology 14:28A.Google Scholar
Herman, A. B., and Spicer, R. A. 1996. Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380:330333.Google Scholar
Hillenius, W. J. 1992. The evolution of nasal turbinates and mammalian endothermy. Paleobiology 18:1729.Google Scholar
Hilton, R. P., Decourten, F. L., Murphy, M. A., Rodda, P. U., and Embree, P. G. 1997. An Early Cretaceous ornithopod dinosaur from California. Journal of Vertebrate Paleontology 17:557560.Google Scholar
Horner, J. R., de Ricqlès, A., and Padian, K. 2000. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: growth dynamics and physiology based on an ontogenetic series of skeletal elements. Journal of Vertebrate Physiology 20:115129.Google Scholar
Howse, S. C. B., and Milner, A. R. 1993. Ornithodesmus: a maniraptorian theropod dinosaur from the Lower Cretaceous of the Isle of Wight, England. Palaeontology 36:425437.Google Scholar
Huber, B. T., and Hodell, D. A. 1996. Reply. Geological Society of America Bulletin 108:11921196.Google Scholar
Huber, B. T., Hodell, D. A., and Hamilton, C. P. 1995. Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geological Society of America Bulletin 107:11641191.2.3.CO;2>CrossRefGoogle Scholar
Incropera, F. P., and DeWitt, D. P. 1996. Fundamentals of heat and mass transfer. Wiley, New York.Google Scholar
Jacobs, L. L., Winkler, D. A., Downs, W. R., and Gomani, E. M. 1993. New material of an Early Cretaceous titanosaurid sauropod dinosaur from Malawi. Palaeontology 36:523534.Google Scholar
Jain, S. L., and Bandyopadhyay, S. 1997. New titanosaurid (Dinosauria: Sauropoda) material from the Late Cretaceous of Central India. Journal of Vertebrate Paleontology 17:114136.Google Scholar
Johnson, C. C., Barron, E. J., Kauffman, E. G., Arthur, M. A., Fawcett, P. J., and Yasuda, M. K. 1996. Middle Cretaceous reef collapse linked to ocean heat transport. Geology 24:376380.Google Scholar
Kellner, A. W. A., and Campos, D. de A. 1996. First early theropod dinosaur from Brazil with comments on Spinosauridae. Neues Jahrbuch für Geologische und Paläontologische, Abhandlungen 199:151166.Google Scholar
Koteja, P. 2000. Energy assimilation, parental care and the evolution of endothermy. Proceedings of the Royal Society of London B 267:479484.Google Scholar
Kuypers, M. M. M., Pancost, R. D., and Damsté, J. S. Sinninghe 1999. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature 399:342345.Google Scholar
Lovegrove, B. G., Heldmaier, G., and Ruf, T. 1987. Perspectives of endothermy revisited: the endothermic temperature range. Journal of thermal Biology 15:185197.Google Scholar
Mayer, H., and Appel, E. 1999. Milankovitch cyclicity and rock-magnetic signatures of palaeoclimatic change in the Early Cretaceous Biancone Formation of the southern Alps, Italy. Cretaceous Research 20:189214.Google Scholar
Milner, A. C., and Hooker, J. J. 1992. An ornithopod dinosaur from the Upper Cretaceous of the Antarctic peninsula. Journal of Vertebrate Paleontology 12:44A.Google Scholar
Mitchell, J. W. 1976. Heat transfer from spheres and other animal forms. Biophysics Journal 16:561569.Google Scholar
Molnar, R. E., and Wiffen, J. 1994. A Late Cretaceous polar dinosaur fauna from New Zealand. Cretaceous Research 15:689706.Google Scholar
Moore, G. T., and Ross, C. A. 1994. Kimmeridgian-Tithonian (Late Jurassic) dinosaur and ammonoid paleoecology from a paleoclimate simulation. Pp. 345361in Embry, et al. 1994.Google Scholar
Norell, M. A., and Clark, J. M. 1992. New dromaeosaur material from the Late Cretaceous of Mongolia. Journal of Vertebrate Paleontology 12:45A.Google Scholar
Novas, F. E. 1997. Anatomy of Patagonykus puertai (Theropoda, Avialae, Alvarezsauridae), from the Late Cretaceous of Patagonia. Journal of Vertebrate Paleontology 17:137166.Google Scholar
Novas, F. E. 1998. Megaraptor namunhuaiqii, gen. et sp. nov., a large clawed, Late Cretaceous theropod from Patagonia. Journal of Vertebrate Paleontology 18:49.Google Scholar
Novas, F. E., and Puerta, P. F. 1997. New evidence concerning avian origins from the Late Cretaceous of Patagonia. Nature 387:390392.Google Scholar
O'Connor, M. P., and Dodson, P. 1999. Biophysical constraints on the thermal ecology of dinosaurs. Paleobiology 25:341368.Google Scholar
O'Connor, M. P., and Spotila, J. R. 1992. Consider a spherical animal: when do short cuts matter in biophysical models? American Zoologist 32:179193.Google Scholar
Padian, K., de Ricqlès, J. A., and Horner, J. R. 2001. Dinosaur growth rates and bird origins. Nature 412:405408.Google Scholar
Paladino, F. V., O'Connor, M. P., and Spotila, J. R. 1990. Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs. Nature 344:858860.Google Scholar
Paladino, F. V., Spotila, J. R., and Dodson, P. 1997. A blueprint for giants: modeling the physiology of large dinosaurs. Pp. 491504in Farlow, and Brett-Surman, 1997.Google Scholar
Parrish, J. M. 1997. Evolution of the archosaurs. Pp. 191203in Farlow, and Brett-Surman, 1997.Google Scholar
Parrish, J. T. 1993. Climate of the supercontinent Pangea. Journal of Geology 101:215233.Google Scholar
Perez-Moreno, B. P., Sanz, J. L., Buscalioni, A. D., Moratalla, J. J., Ortega, F., and Rasskin-Gutman, D. 1994. A unique multi-toothed ornithomimosaur dinosaur from the Lower Cretaceous of Spain. Nature 370:363367.Google Scholar
Perle, A., Norell, M. A., Chiappe, L. M., and Clark, J. M. 1993. Flightless bird from the Cretaceous of Mongolia. Nature 362:623626.Google Scholar
Pough, F. H. 1980. The advantages of ectothermy for tetrapods. American Naturalist 115:92112.Google Scholar
Qiang, J., Currie, P. J., Norell, M. A., and Shu-An, J. 1998. Two feathered dinosaurs from northeastern China. Nature 393:753761.Google Scholar
Rasch, R., Tucker, A. D., Daddow, L., and Wentrup-Byrne, E. 2001. Electron microprobe investigation of growth marks in crocodile osteoderms. Pp. 144155in Grigg, G. C., Seebacher, F., and Franklin, C. E., eds. Crocodilian biology and evolution. Surrey Beatty, Chipping Norton, Australia.Google Scholar
Rauhut, O. W. M., and Werner, C. 1997. First record of a Maastrichtian sauropod dinosaur from Egypt. Paleontologica Africana 34:6367.Google Scholar
Reid, R. E. H. 1990. Zonal “growth rings” in dinosaurs. Modern Geology 15:1948.Google Scholar
Reid, R. E. H. 1997a. Dinosaurian physiology: the case for “intermediate” dinosaurs. Pp. 449473in Farlow, and Brett-Surman, 1997.Google Scholar
Reid, R. E. H. 1997b. How dinosaurs grew. Pp. 403413in Farlow, and Brett-Surman, 1997.Google Scholar
Rich, T. H. 1996. Significance of polar dinosaurs in Gondwana. Memoirs of the Queensland Museum 39:711717.Google Scholar
Rich, T. H., and Rich, P. V. 1989. Polar dinosaurs and biotas of the early Cretaceous of southeastern Australia. National Geographic Research 5:1553.Google Scholar
Rootes, W. L., Chabreck, R. H., Wright, V. L., Brown, B. W., and Hess, T. J. 1991. Growth rates of American alligators in estuarine and palustrine wetlands in Louisiana. Estuaries 14:489494.Google Scholar
Ruben, J. A. 1995. The evolution of endothermy in mammals and birds: from physiology to fossils. Annual Review of Physiology 57:6995.Google Scholar
Ruben, J. A., Hillenius, W. J., Geist, N. R., Leitch, A., Jones, T. D., Currie, P. J., Horner, J. R., and Espe, G. III. 1996. The metabolic status of some late Cretaceous dinosaurs. Science 273:12041207.Google Scholar
Ruben, J. A., Jones, T. D., Geist, N. R., and Hillenius, W. J. 1997. Lung structure and ventilation in theropod dinosaurs and early birds. Science 278:12671270.Google Scholar
Ruben, J. A., Dal Sasso, C., Geist, N. R., Hillenius, W. J., Jones, T. D., and Signore, M. 1999. Pulmonary function and metabolic physiology of theropod dinosaurs. Science 283:514516.Google Scholar
Russell, D. A., and Dong, Z. 1993a. The affinities of a new theropod from the Alxa Desert, Inner Mongolia, People's Republic of China. Canadian Journal of Earth Sciences 30:21072127.Google Scholar
Russell, D. A., and Dong, Z. 1993b. A nearly complete skeleton of a new troodontid dinosaur from the Early Cretaceous of the Ordon Basin, Inner Mongolia, People's Republic of China. Canadian Journal of Earth Sciences 30:21632173.Google Scholar
Russell, D. A., and Zheng, Z. 1993. A large mamenchisaurid from the Junggar Basin, Xinjiang, People's Republic of China. Canadian Journal of Earth Sciences 30:20822095.Google Scholar
Sampson, S. D., Krause, D. W., Forster, C. A., and Dodson, P. 1996. Non-avian theropod dinosaurs from the Late Cretaceous of Madagascar and their paleobiogeographic implications. Journal of Vertebrate Paleontology 16:62A.Google Scholar
Schluter, D. 2001. Ecology and the origin of species. Trends in Ecology and Evolution 16:372380.Google Scholar
Seebacher, F. 1999. Behavioural postures and the rate of body temperature change in wild freshwater crocodiles, Crocodylus johnstoni. Physiological and Biochemical Zoology 72:5763.Google Scholar
Seebacher, F. 2001. A new method to calculate allometric length-mass relationships of dinosaurs. Journal of Vertebrate Paleontology 21:5160.Google Scholar
Seebacher, F., and Grigg, G. C. 1997. Patterns of body temperature in wild freshwater crocodiles, Crocodylus johnstoni: thermoregulation versus thermoconformity, seasonal acclimatization and the effect of social interactions. Copeia 1997:549557.Google Scholar
Seebacher, F., and Grigg, G. C. 2001. Changes in heart rate are important for thermo regulation in the varanid lizard Varanus varius. Journal of Comparative Physiology B 171:395400.Google Scholar
Seebacher, F., Grigg, G. C., and Beard, L. A. 1999. Crocodiles as dinosaurs: behavioural thermoregulation in very large ectotherms leads to high and stable body temperatures. Journal of Experimental Biology 102:7786.Google Scholar
Sellwood, B. W., Price, G. D., and Valdes, P. J. 1994. Cooler estimates of Cretaceous temperatures. Nature 370:453455.Google Scholar
Sereno, P. C. 1999. The evolution of dinosaurs. Science 284:21372147.Google Scholar
Sereno, P. C., and Novas, F. E. 1992. The complete skull and skeleton of an early dinosaur. Science 258:11371140.Google Scholar
Sereno, P. C., Forster, C. A., Rogers, R. R., and Monetta, A. M. 1993. Primitive dinosaur skeleton from Argentina and the early evolution of Dinosauria. Nature 361:6466.Google Scholar
Sereno, P. C., Wilson, J. A., Larsson, H. C. E., Dutheil, D. B., and Sues, H. 1994. Early Cretaceous dinosaurs from the Sahara. Science 266:267271.Google Scholar
Sereno, P. C., Dutheil, D. B., Iarochene, M., Larsson, H. C. E., Lyon, G. H., Magwene, P. M., Sidor, C. A., Varricchio, D. J., and Wilson, J. A. 1996. Predatory dinosaurs from the Sahara and Late Cretaceous faunal differentiation. Science 272:986991.Google Scholar
Sereno, P. C., Beck, A. L., Dutheil, D. B., Gado, B., Larsson, H. C. E., Lyon, G. H., Marcot, J. D, Rauhut, O. W. M., Sadleir, R. W., Sidor, C. A., Varricchio, D. D., Wilson, G. P., and Wilson, J. A. 1998. A long-snouted dinosaur from Africa and the evolution of spinosaurids. Science 282:12981302.Google Scholar
Seymour, R. S., and Lillywhite, H. B. 2000. Hearts, neck posture and metabolic intensity of sauropod dinosaurs. Proceedings of the Royal Society of London B 267:18831887.Google Scholar
Sloan, L. C., and Barron, E. J. 1990. “Equable” climates during Earth history? Geology 18:489492.Google Scholar
Smith, A. G., Smith, D. G., and Funnell, B. M. 1994. Atlas of Mesozoic and Cenozoic coastlines. Cambridge University Press, Cambridge.Google Scholar
Spotila, J. R., Lommen, P. W., Bakken, G. S., and Gates, D. M. 1973. A mathematical model for body temperatures of large reptiles: implications for dinosaur ecology. American Naturalist 107:391404.Google Scholar
Pierre, J. St., Charest, P.-M., and Guderley, H. 1998. Relative contribution of quantitative and qualitative changes in mitochondria to metabolic compensation during seasonal acclimatization of rainbow trout Oncorhynchus mykiss. Journal of Experimental Biology 201:29612970.Google Scholar
Sues, H. 1997. On Chirostenotes, a Late Cretaceous oviraptorosaur (Dinosauria: Theropoda) from western North America. Journal of Vertebrate Paleontology 17:698716.Google Scholar
Sumida, S. S., and Brochu, C. A. 2000. Phylogenetic context for the origin of feathers. American Zoologist 40:486503.Google Scholar
Tarduno, J. A., Brinkman, D. B., Renne, P. R., Cottrell, R. D., Scher, H., and Castillo, P. 1998. Evidence for extreme climatic warmth from Late Cretaceous arctic vertebrates. Science 282:2241–2200.Google Scholar
Thompson, G. G., and Withers, P. C. 1997. Standard and maximal metabolic rates of goannas (Squamata: Varanidae). Physiological Zoology 70:307323.Google Scholar
Thulborn, R. A. 1994. Ornithopod dinosaur tracks from the Lower Jurassic of Queensland. Alcheringa 18:247258.Google Scholar
Tracy, C. R. 1982. Biophysical modeling in reptilian physiology and ecology. Pp. 275321in Gans, C. and Pough, F. H., eds. Biology of the Reptilia, Vol. 12. Academic Press, New York.Google Scholar
Turner, J. S. 1987. On the transient temperatures of ectotherms. Journal of thermal Biology 12:207214.Google Scholar
Tykoski, R. S. 1997. A new ceratosaurid theropod from the Early Jurassic Kayenta formation of northern Arizona. Journal of Vertebrate Paleontology 17:81A.Google Scholar
Vakhrameev, V. A. 1991. Jurassic and Cretaceous floras and climates of the earth. Cambridge University Press, Cambridge.Google Scholar
Webb, G., and Manolis, C. 1989. Crocodiles of Australia. Reed Books, Frenchs Forest, N.S.W., Australia.Google Scholar
Weishampel, D. B. 1990. Dinosaur distributions. Pp. 63139in Weishampel, D. B., Dodson, P., and Osmolska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar
Williams, T. M. 1990. Heat transfer in elephants: thermal partitioning based on skin temperature profiles. Journal of Zoology 222:235245.Google Scholar
Winkler, D. A., Murry, P. A., and Jacobs, L. L. 1997. A new species of Tenontosaurus (Dinosauria: Ornithopoda) from the early Cretaceous of Texas. Journal of Vertebrate Paleontology 17:330348.Google Scholar
Wright, P. G. 1984. Why do elephants flap their ears? South African Journal of Zoology 19:266269.Google Scholar
Xu, X., Tang, Z., and Wang, X. 1999a. A therizinosauroid dinosaur with integumentary structures from China. Nature 399:350354.Google Scholar
Xu, X., Wang, X., and Wu, X. 1999b. A dromaeosaurid dinosaur with a filamentous integument from the Yixian formation of China. Nature 401:262266.Google Scholar
Yemane, K. 1993. Contribution of Late Permian palaeogeography in maintaining a temperate climate in Gondwana. Nature 361:5154.Google Scholar
Zhao, X., and Currie, P. J. 1993. A large crested theropod from the Jurassic of Xinjiang, People's Republic of China. Canadian Journal of Earth Sciences 30:20272036.Google Scholar
Zhao, X., and Xu, X. 1998. The oldest known coelurosaurian. Science 394:234235.Google Scholar