Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-07T12:32:56.496Z Has data issue: false hasContentIssue false

Feeding ecology, dispersal, and extinction of South American Pleistocene gomphotheres (Gomphotheriidae, Proboscidea)

Published online by Cambridge University Press:  08 April 2016

Begoña Sánchez
Affiliation:
Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, Madrid 28006, Spain. E-mail: mcnsc2b@mncn.csic.es, E-mail: malberdi@mncn.csic.es
José Luis Prado
Affiliation:
INCUAPA, Universidad Nacional del Centro, Del Valle 5737, Olavarría B7400JWI, Argentina. E-mail: jprado@soc.unicen.edu.ar
María Teresa Alberdi
Affiliation:
Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, Madrid 28006, Spain. E-mail: mcnsc2b@mncn.csic.es, E-mail: malberdi@mncn.csic.es

Abstract

To reconstruct the paleodiet and habitat preference of gomphotheres, we measured the carbon and oxygen isotope composition of 68 bone and tooth samples for three species of Gomphotheriidae from 24 different localities (Argentina, Bolivia, Ecuador, Chile, and Brazil). Additionally, we measured the isotopic oxygen in the phosphate of 30 samples to control diagenetic alteration. We calculated the correlation between pairs of δ18Op18Oc values for enamel, dentine, and bone, taken from the same individual in order to verify whether the oxygen of structural apatite carbonate was in equilibrium with body water. Because of the good correlation obtained among pairs of the three skeletal components, we considered the δ13C results of all components to be equally representative of both gomphothere groups, and we used them collectively in the analysis of the data.

To compare the different groups of specimens, we divided the samples into six groups, taking into account their taxonomy as well as their geographic and stratigraphic distribution. Cuvieronius specimens from Chile were exclusively C3 plants eaters, whereas specimens from Bolivia and Ecuador had a mixed C3-C4 diet. Stegomastodon showed a wider range of dietary adaptations. Specimens from Quequén Salado in Buenos Aires Province were entirely C3 feeders, whereas the diet of specimens from La Carolina Peninsula (Ecuador) was exclusively C4. The remaining South American groups analyzed were C3-C4 mixed-feeders. Carbon isotope composition of bone and teeth decreased as latitude increased. We found evidence of an exclusively C3-dominated diet at approximately 35–41°S. This result confirms that ancient feeding ecology cannot always be inferred from dental morphology or extant relatives. Data from middle and late Pleistocene indicated that, over time, there was an adaptive change in paleodiet from predominantly mixed-feeders to more specialized feeders. We propose that this dietary evolution was one of the causes that forced gomphotheres to extinction in South America. In addition, the data presented in this paper suggest that because of the different feeding preferences among mastodons, mammoths, and gomphotheres, only the bunodont gomphotheres reached South America.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberdi, M. T., and Prado, J. L. 1995. Los mastodontes de América del Sur. in Alberdi, M. T., Leone, G., and Tonni, E. P., eds. Evolución biológica y climática de la Región Pampeana durante los últimos 5 millones de años. Monografías, Museo Nacional de Ciencias Naturales 12:277292. Consejo Superior de Investigaciones Científicas, Madrid.Google Scholar
Ayliffe, L. K., Lister, A. M., and Chivas, A. R. 1992. The preservation of glacial-interglacial climate signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 99:179191.Google Scholar
Ayliffe, L. K., Chivas, A. R., and Leakey, M. G. 1994. The retention of primary oxygen isotope composition of fossil elephant skeletal phosphate. Geochimica et Cosmochimica Acta 58:52915298.Google Scholar
Bryan, A. L., Casamiquela, R. M., Cruxent, J. M., Gruhn, R., and Ochsenius, C. 1978. An El Jobo mastodon kill at Taima-Taima, Venezuela. Science 200:12751277.Google Scholar
Bryant, J. D., and Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59:45234537.Google Scholar
Bryant, J. D., Luz, B., and Froelich, P. N. 1994. Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107:303316.Google Scholar
Bryant, J. D., Froelich, P. N., Showers, W. J., and Genna, B. J. 1996. Biologic and climatic signals in the oxygen isotopic composition of Eocene-Oligocene equid enamel phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 126:7589.Google Scholar
Bocherens, H., Koch, P. L., Mariott, A., Geraads, D., and Jaeger, J.-J. 1996. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11:306318.Google Scholar
Cabrera, A. 1929. Una revisión de los Mastodontes Argentinos. Revista del Museo de La Plata 32:61144.Google Scholar
Casamiquela, R. M., Shoshani, J., and Dillehay, T. D. 1996. South American proboscidean: general introduction and reflections on Pleistocene extinctions. Pp. 316320in Shoshani, J. and Tassy, P., eds. The Proboscidea: evolution and palaeoecology of elephants and their relatives. Oxford University Press, Oxford.Google Scholar
Cerling, T. E., Wang, Y., and Quade, J. 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the Late Miocene. Nature 361: 344–45.Google Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., and Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153158.Google Scholar
Connin, S. L., Betancourt, J., and Quade, J. 1998. Late Pleistocene C4 plant dominance and summer rainfall in the southwestern United States from isotopic study of herbivore teeth. Quaternary Research 50:179193.Google Scholar
Correal Urrego, G. 1981. Evidencias culturales y megafauna pleistocénica en Colombia. Fundación de Investigaciones Arqueológicas Nacionales 12:1148.Google Scholar
D'Angela, D., and Longinelli, A. 1990. Oxygen isotopic composition of fossil mammal bones of bones of Holocene age: paleoclimatological considerations. Chemical Geology (Isotopic Geoscience Section) 103:171179.Google Scholar
Davis, O. K., Mead, J. I., Martin, P. S., and Agenbroad, L. D. 1985. Riparian plants were a major component of the diet of mammoths of southern Utah. Current Research in the Pleistocene 2:8182.Google Scholar
Delgado, A., Iacumin, P., Stenni, B., Sanchez, B., and Longinelli, A. 1995. Oxygen isotope variations of phosphate in mammalian bone and tooth enamel. Geochimica et Cosmochimica Acta 59:42994305.Google Scholar
De Niro, M. J., and Epstein, S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochima et Cosmochimica Acta 42:495506.Google Scholar
Dillehay, T. D., and Collins, M. 1988. Early cultural evidence from Monte Verde in Chile. Nature 332:150152.Google Scholar
Ehleringer, J. R., Field, C. B., Lin, Z. F., and Kuo, C. Y. 1986. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline. Oecologia 70:520526.Google Scholar
Ehleringer, J. R., Sage, R. F., Flanagan, L. B., and Pearcy, R. W. 1991. Climatic change and evolution of C4 photosynthesis. Trends in Ecology and Evolution 6:9599.Google Scholar
Ehleringer, J. R., Cerling, T. E., and Helliker, B. K. 1997. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285299.Google Scholar
Epstein, H. E., Lauenroth, W. K., Burke, I. C., and Coffin, D. P. 1997. Productivity patterns of C3 and C4 functional types in the U.S. Great Plains. Ecology 78:722731.Google Scholar
Ficcarelli, G., Borselli, V., Moreno Espinosa, M., and Torre, D. 1993. New Haplomastodon finds from the Late Pleistocene of Northern Ecuador. Geobios 26:231240.Google Scholar
Fox, D. L. 2000. Growth increments in Gomphotherium tusks and implications for late Miocene climate change in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 156:327348.Google Scholar
Frassinetti, D., and Alberdi, M. T. 2000. Revisión y estudio de los restos fósiles de Mastodontes de Chile (Gomphotheriidae): Cuvieronius hyodon, Pleistoceno superior. Estudios Geológicos 56:197208.Google Scholar
Fricke, H. C., and O'Neil, J. R. 1996. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology 126:9199.Google Scholar
Fricke, H. C., Clyde, W. C., and O'Neil, J. R. 1998. Intra-tooth variations in δ18O(PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochimica et Cosmochimica Acta 62(11):18391850.Google Scholar
Graham, R. W., and Lundelius, E. L. 1984. Coevolutionary disequilibrium and Pleistocene Extinction. Pp. 223249in Martin, and Klein, 1984. Quaternary extinctions: a prehistoric revolution.Google Scholar
Guthrie, R. D. 1984. Mosaics, allelochemics and nutrients. an ecological theory of late pleistocene megafaunal extinction. Pp. 259298in Martin, and Klein, 1984.Google Scholar
Hoffstetter, R. 1952. Les mammifères Pléistocenes de la République de l'Equateur. Mémoires de la Société Géologique de France 66:1391.Google Scholar
Janzen, D. H., and Martin, P. S. 1982. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215:1927.Google Scholar
King, J. E., and Saunders, J. J. 1984. Environmental insularity and the extinction of the American mastodont. Pp. 315339in Martin, and Klein, 1984.Google Scholar
Koch, P. L., Fisher, D. C., and Dettman, D. 1989. Oxygen isotope variation in the tusks of extinct proboscideans: a measure of season of death and seasonality. Geology 17:515519.Google Scholar
Koch, P. L., Behrensmeyer, A. K., Tuross, N., and Fogel, M. L. 1990. The fidelity of isotopic preservation during bone weathering and burial. Pp. 105110in Annual Report of the Director, Geophysical Laboratory, Carnegie Institution of Washington 1989–1990.Google Scholar
Koch, P. L., Fogel, M. L., and Tuross, N. 1994. Tracing the diets of fossil animals using stable isotopes. Pp. 6392in Lajtha, K. and Michener, R. H., eds. Stable isotopes in ecology and environmental Science. Blackwell Scientific, Oxford.Google Scholar
Koch, P. L., Heisinger, J., Moss, C., Carlson, R. W., Fogel, M. L., and Behrensmeyer, A. K. 1995. Isotopic tracking of change in diet and habitat use in African elephants. Science 267:13401343.Google Scholar
Koch, P. L., Tuross, N., and Fogel, M. L. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbon in biogenic hydroxylapatite. Journal of Archaeological Science 24:417429.Google Scholar
Koch, P. L., Hoppe, K. A., and Webb, S. D. 1998. The isotopic ecology of late Pleistocene mammals in North America, Part 1. Florida. Chemical Geology 152:119138.Google Scholar
Kohn, M. J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60:48114829.Google Scholar
Kohn, M. J., Schoeninger, M. J., and Valley, J. W. 1996. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochimica et Cosmochimica Acta 60:38893896.Google Scholar
Kohn, M. J. 1998. Variability in oxygen isotope compositions of herbivore teeth: reflections of seasonality or developmental physiology? Chemical Geology 152:97112.Google Scholar
Kolodny, Y., Luz, B., and Navon, O. 1983. Oxygen isotope variations in phosphate of biogenic apatites. I. Fish bone apatite: rechecking the rules of the game. Earth and Planetary Science Letters 64:398404.Google Scholar
Latorre, C., Quade, J., and McIntosh, W. C. 1997. The expansion of C4 grasses and global change in the late Miocene: stable isotope evidence from the Americas. Earth and Planetary Science Letters 146:8396.Google Scholar
Lee-Thorp, J. A., and Van der Merwe, N. J. 1987. Carbon isotope analysis of fossil bone apatite. South African Journal of Science 83:712715.Google Scholar
Lee-Thorp, J. A., van der Merwe, N. J., and Brain, C. K. 1989. Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. Journal of Human Evolution 18:183190.Google Scholar
Lee-Thorp, J. A., van der Merwe, N. J., and Brain, C. K. 1994. Diet of Australopithecus robustus at Swartkrans deduced from stable carbon isotope ratios. Journal of Human Evolution 27:361372.Google Scholar
Longinelli, A. 1965. Oxygen isotopic composition of orthophosphate from shells of living marine organisms. Nature 207:716718.Google Scholar
Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48:385390.Google Scholar
Longinelli, A., and Nuti, S. 1973. Oxygen isotope measurements of phosphate from fish teeth and bones. Earth and Planetary Science Letters 20:337340.Google Scholar
Luz, B., Kolodny, Y., and Horowitz, M. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48:16891693.Google Scholar
MacFadden, B. J. 1998. Tale of two rhinos: isotopic ecology, paleodiet, and niche differentiation of Aphelops and Teleoceras from the Florida Neogene. Paleobiology 24:274286.Google Scholar
MacFadden, B. J. 2000a. Middle Pleistocene climate change recorded in fossil mammal teeth from Tarija, Bolivia, and upper limit of the Ensenadan Land-Mammal Age. Quaternary Research 54:121131.Google Scholar
MacFadden, B. J. 2000b. Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. Annual Review of Ecology and Systematics 31:3359.Google Scholar
MacFadden, B. J., and Cerling, T. E. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million year sequence from the Neogene of Florida. Journal of Vertebrate Paleontology 16:103115.Google Scholar
MacFadden, B. J., and Shockey, B. J. 1997. Ancient feeding ecology and niche differentiation of Pleistocene mammalian herbivores from Tarija, Bolivia: morphological and isotopic evidence. Paleobiology 23:77100.Google Scholar
MacFadden, B. J., Wang, Y., Cerling, T. E., and Anaya, F. 1994. South American fossil mammals and carbon isotopes: a 25 million-year sequence from the Bolivian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 107:257268.Google Scholar
MacFadden, B. J., Cerling, T. E., and Prado, J. L. 1996. Cenozoic terrestrial ecosystem evolution in Argentina: evidence from carbon isotopes of fossil mammal teeth. Palaios 11:319327.Google Scholar
MacFadden, B. J., Cerling, T. E., Harris, J. M., and Prado, J. L. 1999. Ancient latitudinal gradients of C3/C4 grasses interpreted from stable isotopes of New World Pleistocene horse (Equus) teeth. Global Ecology and Biogeography 8:137149.Google Scholar
Martin, P. S. 1984. Prehistoric Overkill: The Global Model. Pp. 354403in Martin, and Klein, 1984.Google Scholar
Martin, P. S., and Klein, R. G., eds. 1984. Quaternary extinctions: a prehistoric revolution. University of Arizona Press, Tucson.Google Scholar
Mones, A., and Francis, J. C. 1973. Lista de los Vertebrados fósiles del Uruguay. II. Comunicaciones Paleontológicas del Museo de Historia Natural de Montevideo 1:3997.Google Scholar
Montane, J. 1968. Paleoindian remains from Laguna Tagua-tagua, central Chile. Science 161:11371138.Google Scholar
Politis, G. G., Prado, J. L., and Beukens, R. P. 1995. The Human Impact In Pleistocene-Holocene Extinctions. Pp. 187205in Johnson, E., ed. South America: the Pampean case—ancient peoples and landscapes. Museum of Texas Tech University, Lubbock, Tex.Google Scholar
Prado, J. L., Alberdi, M. T., Azanza, B., and Sánchez, B. 2001. Climate and changes in mammal diversity during the late Pleistocene-Holocene in the Pampean Region (Argentina). Acta Palaeontologica Polonica 46:261276.Google Scholar
Prado, J. L., Alberdi, M. T. and Gómez, G. N. 2002. Late Pleistocene gomphothere (Proboscidea) remains from the Arroyo Tapalqué locality (Buenos Aires, Argentina) and their taxonomic and biogeographic implications. Neues Jahrbuch für Geologie und Paläontologie 225:275296.Google Scholar
Prado, J. L., Alberdi, M. T., Sánchez, B., and Azanza, B. 2003. Diversity of the Pleistocene Gomphotheres (Gomphotheriidae, Proboscidea) from South America. Second International Mammoth Conference, May 16–20, 1999, Deinsea 9:347363.Google Scholar
Quade, J., Cerling, T. E., Barry, J. C., Morgan, M. E., Pilbeam, D. R., Chivas, A. R., Lee-Thorp, J. A., and van der Merwe, N. J. 1992. A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chemical Geology (Isotope Geoscience Section) 94:183192.Google Scholar
Roth, V. L. 1992. Quantitative variations in elephant dentitions: implications for the delimitation of fossil species. Paleobiology 18:184202.Google Scholar
Roth, V. L., and Shoshani, J. 1988. Dental identification and age determination in Elephas maximus. Journal of Zoology 214:567588.Google Scholar
Sánchez-Chillón, B., and Alberdi, M. T. 1996. Taphonomic modification of oxygen isotopic composition in some South American Quaternary mammal remains. Pp. 353356in Meléndez, G., Blasco, M. F., and Pérez, I., eds. II Reunión de Tafonomía y Fosilización. Institución Fernando el Católico, Zaragoza.Google Scholar
Sánchez-Chillón, B., Alberdi, M. T., Leone, G., Bonadonna, F. P., Stenni, B., and Longinelli, A. 1994. Oxygen isotopic composition of fossil equid tooth and bone phosphate: an archive of difficult interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 107:317328.Google Scholar
Simpson, G. G. 1980. Splendid isolation: the curious history of South American mammals. Yale University Press, New Haven, Conn.Google Scholar
Simpson, G. G., and Paula Couto, C. 1957. The mastodonts of Brazil. Bulletin of the American Museum of Natural History 112:125190.Google Scholar
Smith, B. N., and Epstein, S. 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiology 47:380384.Google Scholar
Sullivan, C. H., and Krueger, H. W. 1981. Carbon isotope analysis of separate chemical phases in modern and fossil bone. Nature 301:177178.Google Scholar
Tieszen, L. L., Hein, D., Qvortrup, S. A., Troughton, J. H., and Imbamba, S. K. 1997. Use of δ13C values to determine vegetation selectivity in East African herbivores. Oecologia 37:351359.Google Scholar
Tudge, A. P. 1960. A method of analysis of oxygen isotopes in orthophosphate: its use in the measurement of paleotemperatures. Geochimica et Cosmochimica Acta 18:8193.Google Scholar
Tuross, N., Behrensmeyer, A. K., Eanes, E. D., Fisher, L. W., and Hare, P. E. 1989. Molecular preservation and crystallographic alterations in a weathering sequence of wildebeest bones. Applied Geochemistry 4:261270.Google Scholar
Vogel, J. C. 1978. Isotopic assessment of the dietary habitats of ungulates. South African Journal of Science 74:298301.Google Scholar
Vogel, J. C., Fuls, A., and Ellis, R. P. 1978. The geographical distribution of kranz grasses in South Africa. South African Journal of Science 74:209215.Google Scholar
Webb, S. D. 1976. A history of savanna Vertebrates in the New World, Part I. North America. Annual Review of Ecology and Systematics 8:355380.Google Scholar
Webb, S. D. 1978. A history of savanna Vertebrates in the New World, Part II: South America and the Great Interchange. Annual Review of Ecology and Systematics 9:393426.Google Scholar
Webb, S. D. 1983. The rise and fall of the late Miocene ungulate fauna in North America. Pp. 267306in Nitecki, M. H., ed. Coevolution. University of Chicago Press, Chicago.Google Scholar
Webb, S. D. 1991. Ecogeography and the Great American Interchange. Paleobiology 17:266280.Google Scholar
Webb, S. D., Dunbar, J., and Newsom, L. 1992. Mastodon digesta from North Florida. Florida Geological Survey Special Publication 10:159.Google Scholar