Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-31T05:03:33.665Z Has data issue: false hasContentIssue false

The modulating role of traits on the biogeographic dynamics of chondrichthyans from the Neogene to the present

Published online by Cambridge University Press:  21 March 2018

Jaime A. Villafaña
Affiliation:
Programa de Magister en Ciencias del Mar, Facultad de Ciencias del Mar, Larrondo 1281, Coquimbo, Chile. E-mail: villafanaj88@univie.ac.at.
Marcelo M. Rivadeneira
Affiliation:
Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas, Av. Ossandon 877, Coquimbo, Chile, and Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile. E-mail: marcelo.rivadeneira@ceaza.cl

Abstract

The environmental transformations that occurred during the Neogene had profound effects on spatiotemporal biodiversity patterns, yet the modulating role of traits (i.e., physiological, ecological, and life-history traits) remains little understood. We tested this idea using the Neogene fossil record of chondrichthyans along the temperate Pacific coast of South America (TPSA). Information for georeferenced occurrences and ecological and life-history information of 38 chondrichthyan fossil genera in 42 Neogene sites was collected. Global georeferenced records were used to estimate present-day biogeographic distributions of the genera and to characterize the range of oceanographic conditions in which each genus lives as a proxy of their realized niche. Biogeographic range shifts (Neogene–present) were evaluated at regional and local scales. The role of traits as drivers of different range dynamics was evaluated using random forest models. The magnitude and direction of biogeographic range shifts were different at both spatial scales. At a regional scale, 34% of genera contracted their ranges, disappearing from the TPSA. At a local scale, a similar proportion of genera expanded and contracted their southern endpoints of distribution. The models showed a high precision at both spatial scales of analyses, but the relative importance of predictor variables differed. At a regional scale, disappearing genera tended to have a higher tolerance to salinity, lower sea surface temperature (SST) range, and smaller body sizes. At a local scale, genera contracting their ranges tended to live at greater depths, tolerate lower levels of primary productivity, and show a reduced tolerance to higher and lower SST ranges. The magnitude and direction of the changes in the range distribution were scale dependent and variable across the genera. Hence, multiple environmental exogenous factors interacted with taxon traits during the Neogene, creating a mosaic of biogeographic dynamics.

Type
Articles
Copyright
Copyright © 2018 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Barnosky, A. D., Hadly, E. A., and Bell, C. J.. 2003. Mammalian response to global warming on varied temporal scales. Journal of Mammalogy 84:354368.Google Scholar
Belanger, C. L., Jablonski, D., Roy, K., Berke, S. K., Krug, A. Z., and Valentine, J. W.. 2012. Global environmental predictors of benthic marine biogeographic structure. Proceedings of the National Academy of Sciences USA 35:14046–14051.CrossRefGoogle Scholar
Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Idleman, B., and Zeitler, P. K.. 2005. Climatic and ecologic changes during Miocene surface uplift in the Southern Patagonian Andes. Earth and Planetary Science Letters 230:125142.Google Scholar
Breiman, L. 2001. Random forests. Machine Learning 45:532.CrossRefGoogle Scholar
Calle, M. L., Urrea, V., Boulesteix, A. L., and Malats, N.. 2011. AUC-RF: a new strategy for genomic profiling with random forest. Human Heredity 72:121132.Google Scholar
Camus, P. A. 2001. Marine biogeography of continental Chile. Revista Chilena de Historia Natural 74:587617.Google Scholar
Canto, J., Yanez, J., and Rovira, J.. 2010. Estado actual del conocimiento de los mamíferos fósiles de Chile. Estudios Geologicos 66:255284.Google Scholar
Carrillo-Briceño, J. D., Gonzalez-Barba, G., Landaeta, M. F., and Nielsen, S. N.. 2013. Condrictios fósiles del Plioceno Superior de la Formación Horcón, Región de Valparaíso, Chile central. Revista Chilena de Historia Natural 86:191206.Google Scholar
Chavez, M. 2008. La ornitofauna de la formación Bahía Inglesa, Caldera, Chile. Ph.D. thesis. Universidad Austral de Chile, Valdivia.Google Scholar
Cione, A. L., Mennucci, J. A., Santalucita, F., and Hospitaleche, C. A.. 2007a. Local extinction of sharks of genus Carcharias Rafinesque, 1810 (Elasmobranchii, Odontaspididae) in the eastern Pacific Ocean. Andean. Geology 1:139145.Google Scholar
Cione, A. L., Tonni, E. P., Bargo, S., Bond, M., Candelo, A. M., Carlini, A. A., Deschamps, C. M., Dozo, M. T., Esteban, G., Goin, F. J., Nasif, N., Noriega, J. I., Ortiz Jaureguizar, E., Pascual, R., Prado, J. L., Reguero, M. A., Scillato-Yane, G. J., Soibelzon, L., Verzi, D. H., Vieytes, E. C., Vizcaino, S. F., and Vucetich, M. G.. 2007b. Mamíferos continentales del Mioceno tardío a la actualidad en la Argentina: cincuenta años de estudios. Ameghiniana 11:257278.Google Scholar
Coates, A. G., Collins, L. S., Aubry, M. P., and Berggren, W. A.. 2004. The geology of the Darien, Panama, and the late Miocene–Pliocene collision of the Panama arc with northwestern South America. Geological Society of America Bulletin 116:13271344.Google Scholar
Compagno, L. J. 2005. Sharks of the world. Princeton University Press, Princeton, N.J.Google Scholar
Crampton, J. S., Cooper, R. A., Beu, A. G., Foote, M., and Marshall, B. A.. 2010. Biotic influences on species duration: interactions between traits in marine molluscs. Paleobiology 36:204223.Google Scholar
Cutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., and Hess, K. T.. 2007. Random forests for classification in ecology. Ecology 88:27832792.Google Scholar
Davidson, A. D., Boyer, A. G., Kim, H., Pompa-Mansilla, S., Hamilton, M. J., Costa, D. P, Ceballos, G., and Brown, J. H. 2012. Drivers and hotspots of extinction risk in marine mammals. Proceedings of the National Academy of Sciences USA 109:3395–3400.Google Scholar
De la Cruz, A. A. 2012. Geología de Ocucaje: aportes en la sedimentología y paleontología de Lomas de Ullujaya (Ica, Perú). Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica 11:51–59.Google Scholar
Dekens, P. S., Ravelo, A. C., and McCarthy, M. D.. 2007. Warm upwelling regions in the Pliocene warm period. Paleoceanography 22:PA3211.Google Scholar
Dowsett, H. J., Foley, K. M., Stoll, D. K., Chandler, M. A., Sohl, L. E., Bentsen, M., Otto-Bliesner, B. L., Bragg, F. J., Chan, W. L., Contoux, C., Dolan, A. M., Haywood, A. M., Jonas, J. A., Jost, A., Kamae, Y., Lohmann, G., Lunt, D. J., Nisancioglu, K. H., Abe-Ouchi, A., Ramstein, G., Riesselman, C. R., Robinson, M. M., Rosenbloom, N. A., Salzmann, U., Stepanek, C., Strother, S. L., Ueda, H., Yan, Q., and Zhang, Z.. 2013. Sea surface temperature of the mid-Piacenzian ocean: a data-model comparison. Sci. Rep. 3:ar2013.Google Scholar
Dulvy, N. K., and Reynolds, J. D.. 2002. Predicting extinction vulnerability in skates. Conservation Biology 16:440450.Google Scholar
Dulvy, N. K., Fowler, S. L., Musick, J. A., Cavanagh, R. D., Kyne, P. M., Harrison, L. R., Carlson, J. K., Davidson, L. N. K., Fordham, S. V., Francis, M. P., Pollock, C. M., Simpfendorfer, C. A., Burgess, G. H., Carpenter, K. E., Compagno, L. J. V., Ebert, D. A., Gibson, C., Heupel, M. R., Livingstone, S. R., Sanciangco, J. C., Stevens, J. D., Valenti, S. V., and White, W. T.. 2014. Extinction risk and conservation of the world’s sharks and rays. eLife 3:e00590.CrossRefGoogle ScholarPubMed
Fenberg, P. B., Menge, B. A., Raimondi, P. T., and Rivadeneira, M. M.. 2015. Biogeographic structure of the northeastern Pacific rocky intertidal: the role of upwelling and dispersal to drive patterns. Ecography 38:8395.Google Scholar
Froese, R., and Pauly, D. Editors 2017. FishBase. World Wide Web electronic publication. www.fishbase.org, version (10/2017).Google Scholar
Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L., and Lange, C.. 2009. Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep-Sea Research, part II (Topical Studies in Oceanography) 56:992–1003.Google Scholar
Garreaud, R. D., Molina, A., and Farias, M.. 2010. Andean uplift, ocean cooling and Atacama hyperaridity: a climate modeling perspective. Earth and Planetary Science Letters 292:3950.Google Scholar
García, V. B., Lucifora, L. O., and Myers, R. A.. 2008. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proceedings of the Royal Society of London B 275:83–89.Google Scholar
Gilly, W. F., Beman, J. M., Litvin, S. Y., and Robison, B. H.. 2013. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annual Review of Marine Science 5:393420.Google Scholar
Goldman, K. J. 1997. Regulation of body temperature in the white shark, Carcharodon carcharias . Journal of Comparative Physiology B 167:423429.Google Scholar
Gordillo, S., Rabassa, J., and Coronato, A.. 2008. Paleoecology and paleobiogeographic patterns of mid-Holocene mollusks from the Beagle Channel (southern Tierra del Fuego, Argentina). Andean. Geology 35:321333.Google Scholar
Graham, R. W., Lundelius, E. L. Jr., Graham, M. A., Schroeder, E. K., Toomey, R. S. III, Anderson, E., Barnosky, A. D., Burns, J. A., Churcher, C. S., Grayson, D. K., Guthrie, R. D., HaringtonR. D., C. R. R. D., C. R., Jefferson, G. T., Martin, L. D., McDonald, H. G., Morlan, R. E., Jr, H. A. Semken, Webb, S. D., Werdelin, L., and Wilson., M. C. 1996. Spatial response of mammals to late Quaternary environmental fluctuations. Science 272:16011606.Google Scholar
Hartley, A. J., and Chong, G.. 2002. Late Pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology 30:4346.Google Scholar
Herm, D. 1969. Marines Pliozän und Pleistozän in Nord- und Mittel-Chile unter besonderer Berücksichtigung der Entwicklung der Mollusken. Zitteliana 2:1159.Google Scholar
Hillis, R. R., Sandiford, M., Reynolds, S. D., and Quigley, M. C.. 2008. Present-day stresses, seismicity and Neogene-to-Recent tectonics of Australia’s “passive” margins: intraplate deformation controlled by plate boundary forces. Geological Society of London Special Publication 306:7190.Google Scholar
Hogan, J. D., Blum, M. J., Gilliam, J. F., Bickford, N., and McIntyre, P. B.. 2014. Consequences of alternative dispersal strategies in a putatively amphidromous fish. Ecology 95:23972408.Google Scholar
Ibaraki, M. 1997. Closing of the central American seaway and Neogene Coastal upwelling along the Pacific coast of America. Tectonophysics 281:99104.Google Scholar
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology 31:192210.Google Scholar
Kaplan, J. O., Bigelow, N. H., Prentice, C., Harrison, S. P., Bartlein, P. J., Christensen, T. R., Cramer, W., Matveyeva, N. V., McGuire, A. D., Murray, D. F., Razzhivin, V. Y., Smith, B., Walker, D. A., Anderson, P. M., Andreev, A. A., Brubaker, L. B., Edwards, M. E., and Lozhkin, A. V.. 2003. Climate change and Arctic ecosystems: 2. modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108(D19), 8171.Google Scholar
Kaschner, K., Schneider, B., Garilao, C., Kesner-Reyes, K., Rius-Barile, J., and Froese, R.. 2016. AquaMaps Environmental Dataset: Half-Degree Cells Authority File (HCAF), Version 6. www.aquamaps.org/data.Google Scholar
Kiel, S., and Nielsen, S. N.. 2010. Quaternary origin of the inverse latitudinal diversity gradient among southern Chilean mollusks. Geology 38:955958.Google Scholar
Koch, P. L., and Barnosky, A. D.. 2006. Late Quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37:215250.Google Scholar
Last, P., White, W., Séret, B., Naylor, G., de Carvalho, M., and Stehmann, M., eds. 2016. Rays of the world. CSIRO Publishing, Melbourne.Google Scholar
Levin, L. 2003. Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanography and Marine Biology 41:145.Google Scholar
Levin, L., Gutiérrez, D., Rathburn, A., Neira, C., Sellanes, J., Munoz, P., Gallardo, V., and Salamanca, M.. 2002. Benthic processes on the Peru margin: a transect across the oxygen minimum zone during the 1997–98 El Niño. Progress in Oceanography 53:127.Google Scholar
Liaw, A., and Wiener, M.. 2002. Classification and regression by randomForest. R News 2(3), 1822.Google Scholar
Linse, K., Griffiths, H. J., Barnes, D. K. A., and Clarke, A.. 2006. Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca. Deep-Sea Research, part II (Topical Studies in Oceanography) 53:9851008.Google Scholar
Lockwood, J. L, Russell, G. J., Gittleman, J. L, Daehler, C. C, McKinney, M. L, and Purvis, A.. 2002. A metric for analyzing taxonomic patterns of extinction risk. Conservation Biology 16:11371142.Google Scholar
Long, D. J. 1993. Late Miocene and Early Pliocene fish assemblages from the north coast of Chile. Tertiary. Research 14:117126.Google Scholar
Lyons, S. K. 2003. A quantitative assessment of the range shifts of Pleistocene mammals. Journal of Mammalogy 84:385402.Google Scholar
Martinez-Pardo, R. 1990. Major Neogene events of the southeastern Pacific: the Chilean and Peruvian record. Palaeogeography, Palaeoclimatology, Palaeoecology 3:263278.Google Scholar
Marx, F. G., and Uhen, M. D.. 2010. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 327:993996.Google Scholar
McKinney, M. L. 1997. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annual Review of Ecology and Systematics 28:495516.Google Scholar
Miller, K. G., Wright, J. D., Browning, J. V., Kulpecz, A., Kominz, M., Naish, T. R., Cramer, B. S., Rosenthal, Y., Peltier, W. R., and Sosdian, S.. 2012. High tide of the warm Pliocene: implications of global sea level for Antarctic deglaciation. Geology 40:407410.Google Scholar
Montes, C., Cardona, A., Jaramillo, C., Pardo, A., Silva, J. C., Valencia, V., Ayala, C., Pérez-Angel, L. C., Rodriguez-Parra, L. A., Ramirez, V., and Niño, H.. 2015. Middle Miocene closure of the Central American Seaway. Science 348:226229.Google Scholar
Nielsen, S. N., and Glodny, J.. 2009. Early Miocene subtropical water temperatures in the southeast Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 280:480488.Google Scholar
Ocean Biogeographic Information System 2015. www.iobis.org, accessed 11 July 2015.Google Scholar
Olabarria, C., and Thurston, M. H.. 2003. Latitudinal and bathymetric trends in body size of the deep-sea gastropod Troschelia berniciensis (King). Marine Biology 143:723730.Google Scholar
Paradis, E., Claude, J., and Strimmer, K.. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289290.Google Scholar
Pimiento, C., MacFadden, B. J., Clements, C. F., Varela, S., Jaramillo, C., Velez-Juarbe, J., and Silliman, B. R.. 2016. Geographical distribution patterns of Carcharocles megalodon over time reveal clues about extinction mechanisms. Journal of Biogeography 43:16451655.Google Scholar
Pimiento, C., Griffin, J. N., Clements, C. F., Silvestro, D., Varela, S., Uhen, M. D., and Jaramillo, C.. 2017. The Pliocene marine megafauna extinction and its impact on functional diversity. Nature Ecology and Evolution 1:1100.Google Scholar
Priede, I. G., Froese, R., Bailey, D. M., Bergstad, O. A., Collins, M. A., Dyb, J. E., Henriques, C., JonesC., E. G. C., E. G., and King, N.. 2006. The absence of sharks from abyssal regions of the world’s oceans. Proceedings of the Royal Society of London B 273:1435–1441.Google Scholar
Raymo, M. E., Lisiecki, L. E., and Nisancioglu, K. H.. 2006. Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science 313:492495.Google Scholar
R Core Team 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.Google Scholar
Reul, N., Fournier, S., Boutin, S., Hernandez, J., Maes, O., Chapron, C., AlroyB., G. B., G., Quilfen, Y., Tenerelli, J., Morisett, S., and Kerr, Y.. 2014. Sea surface salinity observations from space with the SMOS satellite: a new means to monitor the marine branch of the water cycle. Surveys in Geophysics 35:681722.Google Scholar
Rivadeneira, M. M., and Marquet, P. A.. 2007. Selective extinction of late Neogene bivalves on the temperate Pacific coast of South America. Paleobiology 33:455468.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W.. 2001. Climate change, species range limits and body size in marine bivalves. Ecology Letters 4:366370.Google Scholar
Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., and Robertson, J.. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57:573583.Google Scholar
Sexton, J. P., McIntyre, P. J., Angert, A. L., and Rice, K. J.. 2009. Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics 40:415436.Google Scholar
Sirot, C., Villéger, S., Mouillot, D., Darnaude, A. M., Ramos-Miranda, J., Flores-Hernandez, D., D., and Panfili, J.. 2015. Combinations of biological attributes predict temporal dynamics of fish species in response to environmental changes. Ecological Indicators 48:147156.Google Scholar
Staig, F., Hernández, S., López, P., Villafaña, J. A., Varas, C., Soto, L. P., and Carrillo-Briceño, J. D.. 2015. Late Neogene elasmobranch fauna from the Coquimbo Formation, Chile. Revista Brasileira De Paleontologia 18:261272.Google Scholar
Steeman, M. E., Hebsgaard, M. B., Fordyce, R. E., Ho, S. Y., Rabosky, D. L., Nielsen, R., Rahbek, C., Glenner, H., Sorensen, M. V., and Willerslev, E.. 2009. Radiation of extant cetaceans driven by restructuring of the oceans. Systematic Biology 58:573585.CrossRefGoogle ScholarPubMed
Strobl, C., Malley, J., and Tutz, G.. 2009. Supplemental material for an introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods 14:323348.Google Scholar
Stuart-Smith, R. D., Edgar, G. J., and Bates, A. E.. 2017. Thermal limits to the geographic distributions of shallow-water marine species. Nature Ecology and Evolution 1:18461852.Google Scholar
Suarez, M. E., Lamilla, J., and Marquardt, C.. 2004. Peces Chimaeriformes (Chondrichthyes, Holocephali) del Neógeno de la Formación Bahía Inglesa (Región de Atacama, Chile). Revista Geológica de Chile 31:105117.Google Scholar
Suarez, M. E., Encinas, E., and Ward, D.. 2006. An Early Miocene elasmobranch fauna from the Navidad Formation, Central Chile, South America. Cainozoic. Research 41:318.Google Scholar
Thiel, M., Macaya, E. C., Acuña, E., Arntz, W. E., Bastias, H., Brokordt, K., Camus, P. A., Castilla, J. C., Castro, L. R., Cortés, M., Dumont, C. P., Escribano, R., Fernandez, M., Gajardo, J. A., Gaymer, C. F., Gomez, I., González, A. E., González, H. E., Haye, P. A., Illanes, J. E., Iriarte, J. L., Lancellotti, D. A., Luna-Jorquera, G., Luxoro, C., Manriquez, P. H., Marín, V., Muñoz, P., Navarrete, S. A., Perez, E., Poulin, E., Sellanes, J., Sepúlveda, H. H., Stotz, W., Tala, F., Thomas, A., Vargas, C. A., Vasquez, J., and Vega, J. M. A.. 2007. The Humboldt Current System of northern and central Chile. In R. N. Gibson, R. J. A. Atkinson, and J. D. M. Gordon, eds. Oceanography and Marine Biology: An Annual Review 45:195344. CRC Press, Boca Raton, Fla.Google Scholar
Tsuchi, R. 2002. Neogene evolution of surface marine climate in Pacific and notes on related events. Revista Mexicana de Ciencias Geológicas 19:260270.Google Scholar
Valenzuela-Toro, A. M., Gutstein, C. S., Varas-Malca, R. M., Suarez, M. E., and Pyenson, N. D.. 2013. Pinniped turnover in the South Pacific Ocean: new evidence from the Plio-Pleistocene of the Atacama Desert, Chile. Journal of Vertebrate Paleontology 33:216223.Google Scholar
Villafaña, J. A. 2010. Extinción selectiva de vertebrados marinos del Neógeno en el Pacifico de Sudamérica. Bachelor’s thesis. Universidad Católica del Norte, Coquimbo, Chile.Google Scholar
Villafaña, J. A., and Rivadeneira, M. M.. 2014. Rise and fall in diversity of Neogene marine vertebrates on the temperate Pacific coast of South America. Paleobiology 40:659674.Google Scholar
Walsh, S. 2001. The Bahia Inglesa Formation bonebed: genesis and palaeontology of a Neogene konzentratlagerstatte from north-central Chile. Ph.D. thesis. University of Portsmouth, United Kingdom.Google Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K.. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to Present. Science 292:686693.CrossRefGoogle ScholarPubMed