Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-15T04:44:37.759Z Has data issue: false hasContentIssue false

Reinvestigation of the occurrence of cutan in plants: implications for the leaf fossil record

Published online by Cambridge University Press:  08 April 2016

Neal S. Gupta
Affiliation:
Organic Geochemistry Unit, Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom Department of Earth Sciences, University of Bristol, Queen's Road, Bristol BS8 1RJ, United Kingdom
Margaret E. Collinson
Affiliation:
Department of Geology, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom. E-mail: m.collinson@gl.rhul.ac.uk
Derek E. G. Briggs
Affiliation:
Department of Geology and Geophysics, Yale University, Post Office Box 208109, New Haven, Connecticut 06520. E-mail: derek.briggs@yale.edu
Richard P. Evershed
Affiliation:
Organic Geochemistry Unit, Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom. E-mail: R.P.Evershed@bristol.ac.uk
Richard D. Pancost
Affiliation:
Organic Geochemistry Unit, Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom. E-mail: R.D.Pancost@bristol.ac.uk

Abstract

Cutan, a resistant non-hydrolyzable aliphatic biopolymer, was first reported in the cuticle of Agave americana and has generally been considered ubiquitous in leaf cuticles along with the structural biopolyester cutin. Because leaves and cuticles in the fossil record almost always have an aliphatic composition, it was argued that selective preservation of cutan played an important role in leaf preservation. However, the analysis of leaves using chemical degradation techniques involving hydrolysis to test for the presence of cutan reveals that it is absent in 16 of 19 taxa (angiosperm and gymnosperm), including many previously reported to contain cutan on the basis of pyrolysis data. Cutan is clearly much less widespread in leaves than previously thought, and its presence or absence does not exert any major bias on the preservation of leaves in the fossil record. In the absence of cutan, other constituents—cutin, plant waxes, and internal plant lipids—are incorporated into the geomacromolecule and contribute to the formation of a resistant aliphatic polymer by in situ polymerization during diagenesis.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Almendros, G., González-Vila, F. J., Martin, F., Sanz, J., and Álvarez-Ramis, C. 1998. Appraisal of pyrolytic techniques on different forms of organic matter from a Cretaceous basement in Central Spain. Organic Geochemistry 28:613623.Google Scholar
Almendros, G., Dorado, J., González-Vila, F. J., Martin, F., Sanz, J., Álvarez-Ramis, J. C., and Stuchlik, L. 1999a. Molecular characterization of fossil organic matter in Glyptostrobus europaeus remains from the Orawa basin (Poland): comparison of pyrolytic techniques. Fuel 78:745752.Google Scholar
Almendros, G., Dorado, J., Sanz, J., Alvarez-Ramis, C., Fernández-Marrón, M. T., and Archangelsky, S. 1999b. Compounds released by sequential chemolysis from cuticular remains of the Cretaceous gymnosperm Squamastrobus tigrensis (Patagonia, the Argentine). Organic Geochemistry 30:623634.CrossRefGoogle Scholar
Ambwani, K. 1991. Leaf impressions belonging to the Tertiary age of Northeast India. Phytomorphology 41:139146.Google Scholar
Baas, M., Briggs, D. E. G., van Heemst, J. D. H., Kear, A. J., and de Leeuw, J. W. 1995. Selective preservation of chitin during the decay of shrimp. Geochimica et Cosmochimica Acta 59:945951.Google Scholar
Bland, H. A., van Bergen, P. F., Carter, J. F., and Evershed, R. P. 1998. Early diagenetic transformations of proteins and polysaccharides in archaeological plant remains. In Stankiewicz, B. A. and van Bergen, P. F., eds. Nitrogen-containing macromolecules in the bio- and geosphere. ACS Symposium Series 707:113131. Oxford University Press, New York.Google Scholar
Boom, A., Sinninghe Damsté, J. S., and de Leeuw, J. W. 2005. Cutan, a common aliphatic biopolymer in cuticles of drought-adapted plants. Organic Geochemistry 36:595601.Google Scholar
Briggs, D. E. G. 1999. Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Philosophical Transactions of the Royal Society of London B 354:716.Google Scholar
Briggs, D. E. G., Evershed, R. P., and Lockheart, M. J. 2000. The biomolecular paleontology of continental fossils. In Erwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):169193.Google Scholar
Burnham, R. J. 1993. Reconstructing richness in the plant fossil record. Palaios 8:376384.CrossRefGoogle Scholar
Burnham, R. J., Wing, S. L., and Parker, G. G. 1999. The reflection of deciduous forest communities in leaf litter—implications for autochthonous litter assemblages from the fossil record. Paleobiology 18:3049.Google Scholar
Challinor, J. M. 1989. A pyrolysis-derivatization-gas chromatograph technique for the elucidation of some synthetic polymers. Journal of Analytical and Applied Pyrolysis 16:323333.Google Scholar
Challinor, J. M. 1991a. Structure determination of alkyd resins by simultaneous pyrolysis methylation. Journal of Analytical and Applied Pyrolysis 18:233244.Google Scholar
Challinor, J. M. 1991b. The scope of pyrolysis methylation reactions. Journal of Analytical and Applied Pyrolysis 20:1524.Google Scholar
Chefetz, B. 2003. Sorption of phenanthrene and atrazine by plant cuticular fractions. Environmental Toxicology and Chemistry 22:24922498.Google Scholar
Collinson, M. E. 1992. The early fossil history of Salicaceae: a brief review. Proceedings of the Royal Society of Edinburgh B 98:155167.Google Scholar
Collinson, M. E., and Hooker, J. J. 2003. Paleogene vegetation of Eurasia: framework for mammalian faunas. Deinsea 10:4183.Google Scholar
Collinson, M. E., Boulter, M. C., and Holmes, P. R. 1993. Magnoliophyta (“Angiospermae”). Pp. 809841in Benton, M. J., ed. The fossil record 2. Chapman and Hall, London.Google Scholar
Collinson, M. E., Mösle, B., Finch, P., Scott, A. C., and Wilson, R. 1998. The preservation of plant cuticle in the fossil record: a chemical and microscopical investigation. Ancient Biomolecules 2:251265.Google Scholar
Collinson, M. E., Mösle, B., Finch, P., Wilson, R., and Scott, A. C. 2000. Preservation of plant cuticles. Acta Palaeobotanica 2(Suppl.):629632.Google Scholar
Crane, P. R. 1989. Early fossil history and evolution of the Betulaceae. In Crane, P. R. and Blackmore, S., eds. Evolution, systematics and fossil history of the Hamamelidae, Vol. 2. ‘Higher’ Hamamelidae. Systematics Association Special Volume 40B:86116. Clarendon, Oxford.Google Scholar
Crepet, W. L., and Nixon, K. C. 1998. Fossil Clusiaceae from the Late Cretaceous (Turonian) of New Jersey and implications regarding the history of bee pollination. American Journal of Botany 85:11221133.CrossRefGoogle ScholarPubMed
Daghlian, C. P., and Crepet, W. L. 1983. Oak catkins, leaves and fruits from the Oligocene Catahoula Formation and their evolutionary significance. American Journal of Botany 70:639649.CrossRefGoogle Scholar
de Leeuw, J. W., and Baas, M. 1993. The behavior of esters in the presence of tetramethylammonium salts at elevated temperatures; flash pyrolysis or flash chemolysis? Journal of Analytical and Applied Pyrolysis 26:175184.Google Scholar
de Leeuw, J. W., and Largeau, C. 1993. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. Pp. 2372in Engel, M. H. and Macko, S. A., eds. Organic geochemistry: principles and applications. Plenum, New York.Google Scholar
Deshmukh, A. P., Simpson, A. J., and Hatcher, P. G. 2003. Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy. Phytochemistry 64:11631170.Google Scholar
Eglinton, G., and Hamilton, R. J. 1967. Leaf epicuticular waxes. Science 156:13221334.Google Scholar
Ewbank, G., Edwards, D., and Abbott, G. D. 1996. Chemical characterization of Lower Devonian vascular plants. Organic Geochemistry 25:461473.CrossRefGoogle Scholar
Finch, P., and Freeman, G. 2001. Simulated diagenesis of plant cuticles—implications for organic fossilisation. Journal of Analytical and Applied Pyrolysis 58:229235.Google Scholar
Fotyanova, L. I. 1997. Lobed-dentate oaks from the Eocene of eastern Asia. Paleontological Journal 31:225234.Google Scholar
Glasspool, I. J., Hilton, J., Collinson, M. E., and Wang, Shi-Jun 2003. Foliar herbivory in Late Palaeozoic Cathaysian gigantopterids. Review of Palaeobotany and Palynology 127:125132.Google Scholar
Glasspool, I. J., Hilton, J., Collinson, M. E., Wang, Shi-Jun, and Li, Cheng-Sen 2004. Foliar physiognomy in Cathaysian gigantopterids and the potential to track Palaeozoic climates using extinct plant groups. Palaeogeography, Palaeoclimatology, Palaeoecology 205:69110.Google Scholar
Gupta, N. S., and Pancost, R. D. 2004. Biomolecular and physical taphonomy of angiosperm leaf in early decay: implications for fossilisation. Palaios 19:428440.Google Scholar
Gupta, N. S., Briggs, D. E. G., Collinson, M. E., Evershed, R. P., Michels, R., Jack, K. S., and Pancost, R. D.In press a. Evidence for the in situ polymerization of labile aliphatic organic compounds during the preservation of fossil leaves: implications for organic matter preservation. Organic Geochemistry.Google Scholar
Gupta, N. S., Briggs, D. E. G., Collinson, M. E., Evershed, R. P., Michels, R., and Pancost, R. D.In press b. Molecular preservation of plant and insect cuticles from the Oligocene Enspel Formation, Germany: evidence against derivation of aliphatic polymer from sediment. Organic Geochemistry.Google Scholar
Hably, L., Kvaček, Z., and Manchester, S. R. 2000. Shared taxa of land plants in the Oligocene of Europe and North America in context of Holarctic phytogeography. Acta Universitatis Carolinae, Geologica 44:5974.Google Scholar
Herendeen, P. S., and Crane, P. R. 1995. The fossil history of the monocotyledons. Pp. 121in Rudall, P. J., Cribb, P. J., Cutler, D. F., and Humphries, C. J., eds. Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew.Google Scholar
Herzog, B., Hoffmann, S., Hartung, W., and Lüttge, U. 1999. Comparison of photosynthetic responses of the sympatric tropical species Clusia multiflora H.B.K. and the C3-CAM intermediate species Clusia minor L. to irradiance and drought stress in a phytotron. Plant Biology 1:460470.Google Scholar
Hill, R. S., ed. 1994. History of the Australian vegetation Cretaceous to Recent. Cambridge University Press, Cambridge.Google Scholar
Hill, R. S. 2004. Origins of the southeastern Australian vegetation. Philosophical Transactions of the Royal Society of London B 359:15371549.CrossRefGoogle ScholarPubMed
Jacobs, B. F. 2002. Estimation of low latitude palaeoclimates using fossil angiosperm leaves: an example from the Miocene Tugen Hills, Kenya. Paleobiology 28:399421.2.0.CO;2>CrossRefGoogle Scholar
Jones, T. P., and Rowe, N. P., eds. 1999. Fossil plants and spores: modern techniques. Geological Society, London.Google Scholar
Kolattukudy, P. E. 1980. Biopolyester membranes of plants: cutin and suberin. Science 208:9901000.Google Scholar
Kowalski, E. A. 2002. Mean annual temperature estimation based on leaf morphology: a test from tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology 188:141165.Google Scholar
Kowalski, E. A., and Dilcher, D. L. 2003. Warmer paleotemperatures for terrestrial ecosystems. Proceedings of the National Academy of Sciences USA 100:167170.CrossRefGoogle ScholarPubMed
Kvaček, Z., and Rember, W. C. 2000. Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae, Geologica 44:7585.Google Scholar
Kvaček, Z., and Walther, H. 1989. Paleobotanical studies in Fagaceae of the European Tertiary. Plant Systematics and Evolution 162:213229.Google Scholar
Kvaček, Z., and Walther, H. 1998. The Oligocene volcanic flora of Kundratice near Litomerice, ceske Stredohori volcanic complex (Czech Republic)—a review. Acta Musei Nationalis Prague, ser. B, Historia Naturalis 54:142.Google Scholar
Lee, S., and Wen, J. 2001. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA. American Journal of Botany 88:150160.Google Scholar
LePage, B. A., Williams, C. J., and Yang, H. 2005. The geobiology and ecology of Metasequoia. Kluwer Academic, Dordrecht.Google Scholar
Liang, M.-M., Bruch, A., Collinson, M., Mosbrugger, V., Li, C.-S., Sun, Q.-G., and Hilton, J. 2003. Testing the climatic estimates from different palaeobotanical methods: an example from the Middle Miocene Shanwang flora of China. Palaeogeography, Palaeoclimatology, Palaeoecology 198:279301.Google Scholar
Liu, Y. S., Guo, S.-X., and Ferguson, D. K. 1996. Catalogue of Cenozoic megafossil plants in China. Palaeontographica, Abteilung B 238:77139.Google Scholar
Logan, G. A., Boon, J. J., and Eglinton, G. 1993. Structural biopolymer preservation in Miocene leaf fossils from the Clarkia site, Northern Idaho. Proceedings of the National Academy of Sciences USA 90:22462250.Google Scholar
Logan, G. A., Smiley, C. J., and Eglinton, G. 1995. Preservation of fossil leaf waxes in association with their source tissues, Clarkia, northern Idaho, USA. Geochimica et Cosmochimica Acta 59:751763.Google Scholar
Lüttge, U. 1999. One morphotype, three physiotypes: sympatric species of Clusia with obligate C3 photosynthesis, obligate CAM and C3-CAM intermediate behaviour. Plant Biology 1:138148.Google Scholar
Mai, D. H. 1984. Karpologische Untersuchungen der Steinkerne fossiler und rezenter Amygdalaceae (Rosales). Feddes Repertorium 95:299329.Google Scholar
Mai, D. H. 1995. Tertiäre Vegetationsgeschichte Europas. Gustav Fischer, Jena.Google Scholar
Mai, D. H., and Walther, H. 1991. Die Oligozänen und untermiozänen Floren NW-Sachsens und des Bitterfelder Raumes. Abhandlungen Staatlichen Museums für Mineralogie und Geologie zu Dresden 38:1230.Google Scholar
Martin, F., Gonzalez-Vila, F. J., del Río, J. C., and Verdejo, T. 1994. Pyrolysis derivatization of humic substances 1. Pyrolysis of fulvic acids in the presence of tetramethylammonium hydroxide. Journal of Applied and Analytical Pyrolysis 28:7180.Google Scholar
McKinney, D. E., Bortiatynski, J. M., Carson, D. M., Clifford, D. J., de Leeuw, J. W., and Hatcher, P. G. 1996. Tetramethylammonium hydroxide thermochemolysis of the aliphatic biopolymer cutan: insights into the chemical structure. Organic Geochemistry 24:641650.Google Scholar
Mösle, B., Finch, P., Collinson, M. E., and Scott, A. C. 1997. Comparison of modern and fossil plant cuticles by selective chemical extraction monitored by flash pyrolysis-gas chromatography-mass spectrometry and electron microscopy. Journal of Analytical and Applied Pyrolysis 40–41:585597.Google Scholar
Mösle, B., Collinson, M. E., Finch, P., Stankiewicz, B. A., Scott, A. C., and Wilson, R. 1998. Factors influencing the preservation of plant cuticles: a comparison of morphology and chemical composition of modern and fossil examples. Organic Geochemistry 29:13691380.CrossRefGoogle Scholar
Mösle, B., Collinson, M. E., Scott, A. C., and Finch, P. 2002. Chemosystematic and microstructural investigations on Carboniferous seed plant cuticles from four North American localities. Review of Palaeobotany and Palynology 120:4152.Google Scholar
Nip, M., Tegelaar, E. W., Brinkhuis, H., de Leeuw, J. W., Schenk, P. A., and Holloway, P. J. 1986a. Analysis of modern and fossil plant cuticles by Curie point Py-GC and Curie point Py-GC-MS: recognition of a new, highly aliphatic and resistant biopolymer. Organic Geochemistry 10:769778.Google Scholar
Nip, M., Tegelaar, E. W., de Leeuw, J. W., and Schenk, P. A. 1986b. A new nonsaponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften 73:579585.Google Scholar
Palamarev, E. H., and Petkova, A. S. 1987. Les fossiles de Bulgarie VIII. 1. La Macroflore du Sarmatien. Bulgarian Academy of Sciences, Sofia. [In Bulgarian, French summary.]Google Scholar
Poirier, N., Derenne, S., Rouzaud, J.-N., Largeau, C., Mariotti, A., Balesdent, J., and Maquet, J. 2000. Chemical structure and sources of the macromolecular, resistant, organic fraction isolated from a forest soil (Lacadée, south-west France). Organic Geochemistry 31:813827.Google Scholar
Prochazka, M., and Buzek, C. 1975. Maple leaves from the Tertiary of North Bohemia. Rozpravy Ustredniho Ustavu Geologickeho 41:186.Google Scholar
Ralph, J., and Hatfield, R. D. 1991. Pyrolysis-GC-MS characterization of forage materials. Journal of Agricultural Food Chemistry 39:14261437.Google Scholar
Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A., and Dilcher, D. L. 2005. Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany 92:11411151.Google Scholar
Royer, D. L., Wing, S. L., Beerling, D. J., Jolley, D. W., Koch, P. L., Hickey, L. J., and Berner, R. A. 2001. Paleobotanical evidence for near present-day levels of atmospheric CO2 during parts of the Tertiary. Science 292:23102313.Google Scholar
Schmidt, H. W., and Schönherr, J. 1982. Development of plant cuticles: occurrence and role of non-ester bonds in cutin of Clivia miniata Reg. leaves. Planta 156:380384.CrossRefGoogle ScholarPubMed
Schouten, S., Moerkerken, P., Gelin, F., Baas, M., de Leeuw, J. W., and Sinninghe Damsté, J. S. 1998. Structural characterization of aliphatic, non-hydrolyzable biopolymers in freshwater algae and a leaf cuticle using ruthenium tetroxide degradation. Phytochemistry 49:987993.Google Scholar
Stankiewicz, B. A., Mastalerz, M., Kruge, M. A., van Bergen, P. F., and Sadowska, A. 1997. A comparative study of modern and fossil cone scale and seeds of conifers: a geochemical approach. New Phytologist 135:375393.Google Scholar
Stankiewicz, B. A., Poinar, H. N., Briggs, D. E. G., Evershed, R. P., and Poinar, G. O. Jr. 1998a. Chemical preservation of plants and insects in natural resins. Proceedings of the Royal Society of London B 265:641647.Google Scholar
Stankiewicz, B. A., Scott, A. C., Collinson, M. E., Finch, P., Mösle, B., Briggs, D. E. G., and Evershed, R. P. 1998b. Molecular taphonomy of arthropod and plant cuticles from the Carboniferous of North America: implications for the origin of kerogen. Journal of the Geological Society, London 155:453462.Google Scholar
Stankiewicz, B. A., Briggs, D. E. G., Michels, R., Collinson, M. E., and Evershed, R. P. 2000. Alternative origin of aliphatic polymer in kerogen. Geology 28:559562.Google Scholar
Sun, B. N., Dilcher, D. L., Beerling, D. J., Zhang, C. J., Yan, D., and Kowalski, E. 2003. Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China. Proceedings of the National Academy of Sciences USA 100:71417146.Google Scholar
Tanai, T. 1995. Fagaceous leaves from the Paleogene of Hokkaido, Japan. Bulletin of the National Science Museum, Tokyo, C 21:71101.Google Scholar
Tegelaar, E. W., de Leeuw, J. W., Derenne, S., and Largeau, C. 1989a. A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta 53:31033106.Google Scholar
Tegelaar, E. W., de Leeuw, J. W., and Holloway, P. J. 1989b. Some mechanisms of flash pyrolysis of naturally occurring higher plant polyesters. Journal of Analytical and Applied Pyrolysis 15:289295.Google Scholar
Tegelaar, E. W., de Leeuw, J. W., Largeau, C., Derenne, S., Schulten, H.-R., Muller, R., Boon, J. J., Nip, M., and Sprenkels, J. C. M. 1989c. Scope and limitations of several pyrolysis methods in the structural elucidation of a macromolecular plant constituent in the leaf cuticle of Agave americana L. Journal of Analytical and Applied Pyrolysis 15:2954.Google Scholar
Tegelaar, E. W., Kerp, H., Visscher, H., Schenk, P. A., and de Leeuw, J. W. 1991. Bias of the paleobotanical record as a consequence of variations in the chemical composition of higher vascular plant cuticles. Paleobiology 17:133144.Google Scholar
Tegelaar, E. W., Wattendorff, J., and de Leeuw, J. W. 1993. Possible effects of chemical heterogeneity in higher land plant cuticles on the preservation of its ultrastructure upon fossilization. Review of Palaeobotany and Palynology 77:149170.Google Scholar
van Bergen, P. F. 1999. Pyrolysis and chemolysis of fossil plant remains: applications to palaeobotany. Pp. 143148in Jones, T. P. and Rowe, N. P., eds. Fossil plants and spores: modern techniques. Geological Society, London.Google Scholar
van Bergen, P. F., Scott, A. C., Barrie, P. J., de Leeuw, J. W., and Collinson, M. E. 1994. The chemical composition of Upper Carboniferous pteridosperm cuticles. Organic Geochemistry 21:107117.Google Scholar
van Bergen, P. F., Collinson, M. E., Briggs, D. E. G., de Leeuw, J. W., Scott, A. C., Evershed, R. P., and Finch, P. 1995. Resistant biomacromolecules in the fossil record. Acta Botanica Neerlandica 44:319342.CrossRefGoogle Scholar
van Bergen, P. F., Flannery, M. B., Poulton, P. R., and Evershed, R. P. 1998. Organic geochemical studies of soils from Rothamsted Experimental Station: III Nitrogen-containing organic matter in soil from Geescroft Wilderness. In Stankiewicz, B. A. and van Bergen, P. F., eds. Nitrogen-containing macromolecules in the bio- and geosphere. ACS Symposium Series 707:321338. Oxford University Press, New York.CrossRefGoogle Scholar
Villena, J. F., Dominguez, E., Stewart, D., and Heredia, A. 1999. Characterization and biosynthesis of non-degradable polymers in plant cuticles. Planta 208:181187.Google Scholar
Walther, H. 1999. Die Tertiärflora von Kleinsaubernitz bei Bautzen. Palaeontographica, Abteilung B 249:63174.Google Scholar
Walton, T. J. 1990. Waxes, cutin and suberin. Pp. 105159in Dey, P. M. and Harborne, J., eds. Methods in plant biochemistry, Vol. 4. Lipids, membranes and aspects of photobiology. Academic Press, San Diego.Google Scholar
Wiemann, M. C., Manchester, S. R., Dilcher, D. L., Hinojosa, L. F., and Wheeler, E. A. 1998. Estimation of temperature and precipitation from morphological characters of dicotyledon leaves. American Journal of Botany 85:17961802.Google Scholar
Wijninga, V. M. 1996. Paleobotany and palynology of Neogene sediments from the high plain of Bogota (Colombia), Chapter 2. Geochemical characterisation of Neogene Organic deposits from Colombia. Ph.D. thesis. University of Amsterdam, Amsterdam. Printed in Wageningen. Published by the author. ISBN 90-9009414–8.Google Scholar
Wilf, P. 1997. When are leaves good thermometers? A new case for Leaf Margin Analysis. Paleobiology 23:373390.Google Scholar
Wilf, P., Cuneo, N. R., Johnson, K. R., Hicks, J. F., Wing, S. L., and Obradovich, J. D. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science 300:122125.Google Scholar
Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., and Freeman, K. H. 2005. Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science 310:993996.Google Scholar
Wolfe, J. A. 1995. Paleoclimatic estimates from Tertiary leaf assemblages. Annual Review of Earth and Planetary Sciences 23:119142.Google Scholar
Wolfe, J. A., and Tanai, T. 1987. Systematics, phylogeny and distribution of Acer (maples) in the Cenozoic of western North America. Journal of the Faculty of Sciences Hokkaido University 22:1246.Google Scholar
Xiao, F.-M., Goodwin, S. M., Xiao, Y., Sun, Z., Baker, D., Tang, X., Jenks, M. A., and Zhou, J.-M. 2004. Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. The EMBO (European Molecular Biology Organisation) Journal 23:29032913.Google Scholar
Yang, H., Huang, Y., Leng, Q., LePage, B. A., and Williams, C. J. 2005. Biomolecular preservation of Tertiary Metasequoia fossil lagerstätten revealed by comparative pyrolysis analysis. Review of Palaeobotany and Palynology 134:237256.Google Scholar