Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-10T23:23:45.091Z Has data issue: false hasContentIssue false

Two genomic paths to the evolution of complexity in bodyplans

Published online by Cambridge University Press:  08 February 2016

James W. Valentine*
Affiliation:
Museum of Paleontology and Department of Integrative Biology, University of California, Berkeley, California 94720. E-mail: jwv@ucmp1.berkeley.edu

Abstract

Morphologically complex metazoans appear abruptly during the Cambrian explosion. Suggested measures of metazoan complexity include number of cell morphotypes and aspects of the genome such as the amount of DNA, the number of genes, and the information content of the genome or egg. Estimates of gene numbers are now available for metazoan species belonging to five different phyla or subphyla. There is little correlation between gene number and morphological complexity in the invertebrates: relatively complex forms can have fewer genes than relatively simple forms. Presumably, the more complex forms use more gene-expression events during development, implying that, on average, cis-regulatory elements of more complex invertebrates are richer in binding sites than are those of simpler forms. Vertebrates have many more genes than invertebrates and therefore have more total gene-expression events during development, although they may have, on average, fewer expression events per gene than the invertebrates. There are thus two genomic pathways in the evolution of metazoan complexity: one involves increasing the number of genes, the other involves increasing the number of cis-regulatory binding sites. Both modes were associated with the origin of bodyplans that first appear as fossils during the Cambrian explosion.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, M. D., et al. 2000. The genome sequence of Drosophila melanogaster. Science 287:21852195.CrossRefGoogle ScholarPubMed
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D. 1989. Molecular Biology of the Cell, 2d ed. Garland, New York.Google Scholar
Amores, A., Force, A., Yan, Y., Joly, L., Amemiya, C., Fritz, A., Ho, R. K., Langeland, J., Price, V., Wang, Y., Westerfield, M., Ekker, M., and Postlethwait, J. H. 1998. Zebrafish Hox clusters and vertebrate genome evolution. Science 282:17111714.CrossRefGoogle ScholarPubMed
Antequera, F., and Bird, A. 1993. Number of CpG islands and genes in human and mouse. Proceedings of the National Academy of Sciences USA 90:1199511999.CrossRefGoogle ScholarPubMed
Bird, A. 1995. Gene number, noise reduction and biological complexity. Trends in Genetics 11:94100.CrossRefGoogle ScholarPubMed
Bird, A., and Tweedie, S. 1995. Transcriptional noise and the evolution of gene number. Philosophical Transactions of the Royal Society of London B 349:249253.Google ScholarPubMed
Bonner, J. T. 1965. Size and cycle. Princeton University Press, Princeton, N.J.CrossRefGoogle Scholar
Bonner, J. T. 1988. The evolution of complexity. Princeton University Press, Princeton, N.J.Google Scholar
Burighel, P., and Cloney, R. A. 1997. Urochordata: Ascidiacea. Pp. 221347in Harrison, F. W. and Ruppert, E. E., eds. Microscopic anatomy of invertebrates, Vol. 5. Hemichordata, Chaetognatha, and the invertebrate chordates. Wiley-Liss, New York.Google Scholar
C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:20122018.CrossRefGoogle Scholar
Chen, J.-Y., Huang, D.-Y., and Li, C.-W. 1999. An Early Cambrian craniate-like chordate. Nature 402:518522.CrossRefGoogle Scholar
Chervitz, S. A., Aravind, L., Sherlock, G., Bell, C. A., Koomin, E. V., Dwight, S. S., Harris, M. A., Dolinski, K., Mohr, S., Smith, T., Weng, S., Cherry, J. M., and Bostein, C. 1998. Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science 282:20222028.CrossRefGoogle ScholarPubMed
Cooke, J., Nowak, M. A., Boerlijst, M., and Maynard-Smith, J. 1997. Evolutionary origins and maintenance of redundant gene-expression during metazoan development. Trends in Genetics 13:360364.CrossRefGoogle ScholarPubMed
Duboule, D., and Wilkins, A. S. 1998. The evolution of “bricolage.” Trends in Genetics 14:5459.CrossRefGoogle ScholarPubMed
Fields, C., Adams, M. D., White, O., and Venter, J. C. 1994. How many genes in the human genome? Nature Genetics 7:345346.CrossRefGoogle ScholarPubMed
Galau, G. A., Klein, W. H., Davis, M. M., Wold, B. J., Britten, R. J., and Davidson, E. H. 1976. Structural gene sets active in embryos and adult tissues of the sea urchin. Cell 7:487505.CrossRefGoogle ScholarPubMed
Garcia-Fernàndez, J., and Holland, P. W. H. 1994. Archetypal organization of the amphioxus gene cluster. Nature 370:563566.CrossRefGoogle ScholarPubMed
Gilbert, S. F. 1997. Developmental biology, 5th ed.Sinauer, Sunderland, Mass.Google Scholar
Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H., and Oliver, S. G. 1996. Life with 6000 genes. Science 274:546567.CrossRefGoogle ScholarPubMed
Hardisty, M. W., and Potter, I. C., eds. 1971. The biology of lampreys. Academic Press, London.Google Scholar
Heinzeller, T., and Welsch, U. 1994. Crinoidea. Pp. 9148in Harrison, F. W. and Chia, F.-S., eds. Microscopic anatomy of invertebrates, Vol. 14. Echinodermata. Wiley-Liss, New York.Google Scholar
Hinegardner, R., and Engleberg, J. 1983. Biological complexity. Journal of Theoretical Biology 104:720.CrossRefGoogle Scholar
Holland, P. W. H., and Garcia-Fernàndez, J. 1996. Hox genes and chordate evolution. Developmental Biology 173:382395.CrossRefGoogle ScholarPubMed
Jahn, B., and Miklos, G. 1988. The eukaryotic genome in development and evolution. Allen and Unwin, London.Google Scholar
Lundin, L.-G. 1999. Gene duplications in early metazoan evolution. Cell and Developmental Biology 10:523530.Google ScholarPubMed
Marshall, C. R., Raff, E. C., and Raff, R. A. 1994. Dollo's law and the death and resurrection of genes. Proceedings of the National Academy of Sciences USA 91:1228312287.CrossRefGoogle ScholarPubMed
Martin, J. W. 1992. Branchiopoda. Pp. 25224in Harrison, F. W. and Humes, A. G., eds. Microscopic anatomy of invertebrates, Vol. 9. Crustacea. Wiley-Liss, New York.Google Scholar
McShea, D. W. 1991. Complexity and evolution: what everybody knows. Biology and Philosophy 6:303324.CrossRefGoogle Scholar
Ohno, S. 1970. Evolution by gene duplication. Springer, New York.CrossRefGoogle Scholar
Patton, S. J., Luke, G. N., and Holland, P. W. H. 1998. Complex history of a chromosomal paralogy region: insights from amphioxus aromatic amino acid hydroxylase genes and insulin-related genes. Molecular Biology and Evolution 15:13731380.CrossRefGoogle ScholarPubMed
Pébusque, M.-J., Coulier, F., Birnbaum, D., and Pontarotti, P. 1998. Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Molecular Biology and Evolution 15:11451159.CrossRefGoogle ScholarPubMed
Raff, R. A., and Kaufman, T. C. 1983. Embryos, genes, and evolution. Macmillan, New York.Google Scholar
Riedl, R. 1977. A systems-analytic approach to macro-evolutionary phenomena. Quarterly Review of Biology 52:351370.CrossRefGoogle Scholar
Rubin, G. M., et al. 2000. Comparative genomics of the eukaryotes. Science 287:22042215.CrossRefGoogle ScholarPubMed
Ruppert, E. E. 1997. Cephalochordata (Acrania). Pp. 349504in Harrison, F. W. and Ruppert, E. E., eds. Microscopic anatomy of Invertebrates, Vol. 15. Hemichordata, Chaetognatha, and the invertebrate chordates. Wiley-Liss, New York.Google Scholar
Saunders, P. T., and Ho, M.-W. 1976. On the increase in complexity in evolution. Journal of Theoretical Biology 90:515530.CrossRefGoogle Scholar
Sharman, A. C., and Holland, P. W. H. 1996. Conservation, duplication and divergence of developmental genes during chordate evolution. Netherlands Journal of Zoology 46:4767.CrossRefGoogle Scholar
Sharman, A. C., and Holland, P. W. H. 1998. Estimation of Hox cluster number in lampreys. International Journal of Developmental Biology 42:617620.Google ScholarPubMed
Shu, D.-G., Luo, H.-L., Morris, S. Conway, Zhang, X.-L., Hu, S.-X., Chen, L., Han, J., Zhu, M., Li, Y., and Chen, L.-Z. 1999. Lower Cambrian vertebrates from south China. Nature 402:4246.CrossRefGoogle Scholar
Simmen, M. W., Leitgeb, S., Clark, V. H., Jones, S. J. M., and Bird, A. 1998. Gene number in an invertebrate chordate, Ciona intestinalis. Proceedings of the National Academy of Sciences USA 95:44374440.CrossRefGoogle Scholar
Sneath, P. H. A. 1964. Comparative biochemical genetics in bacterial taxonomy. Pp. 565583in Leone, C. A., ed. Taxonomic biochemistry and serology. Ronald, New York.Google Scholar
Valentine, J. W. 1991. Major factors in the rapidity and extent of the metazoan radiation during the Proterozoic-Phanerozoic transition. Pp. 1113in Simonetta, A. M. and Morris, S. Conway, eds. The early evolution of the Metazoa and the significance of problematic taxa. Cambridge University Press, Cambridge.Google Scholar
Valentine, J. W. 1994. Late Precambrian bilaterians: grades and clades. Proceedings of the National Academy of Sciences USA 91:67516757.CrossRefGoogle ScholarPubMed
Valentine, J. W., Collins, A. G., and Meyer, C. P. 1994. Morphological complexity increase in metazoans. Paleobiology 20:131142.CrossRefGoogle Scholar
Valentine, J. W., Jablonski, D., and Erwin, D. H. 1999. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851859.CrossRefGoogle ScholarPubMed
Wainright, P. O., Hinkle, T., Sogin, M. L., and Stickel, S. K. 1993. Monophyletic origins of the Metazoa: an evolutionary link with fungi. Science 260:340342.CrossRefGoogle ScholarPubMed
Wicken, J. W. 1979. The generation of complexity in evolution: a thermodynamic and information-theoretical discussion. Journal of Theoretical Biology 77:349365.CrossRefGoogle ScholarPubMed
Wright, K. A. 1991. Nematoda. Pp. 111195in Harrison, F. W. and Ruppert, E. E., eds. Microscopic anatomy of invertebrates, Vol. 4. Aschelminthes. Wiley-Liss, New York.Google Scholar