Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-08T09:47:26.738Z Has data issue: false hasContentIssue false

Analysis of the beta-tubulin codon 200 genotype distribution in a benzimidazole-susceptible and -resistant cyathostome population

Published online by Cambridge University Press:  09 October 2003

M. PAPE
Affiliation:
Institute of Parasitology, School of Veterinary Medicine Hannover, Buenteweg 17, D-30559 Hannover, Germany
J. POSEDI
Affiliation:
Institute of Microbiology and Parasitology, Veterinary Faculty of Ljubljana, University of Ljubljana, Slovenia
K. FAILING
Affiliation:
Department for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus-Liebig-University, Frankfurter Str. 95, D-35392 Giessen, Germany
T. SCHNIEDER
Affiliation:
Institute of Parasitology, School of Veterinary Medicine Hannover, Buenteweg 17, D-30559 Hannover, Germany
G. von SAMSON-HIMMELSTJERNA
Affiliation:
Institute of Parasitology, School of Veterinary Medicine Hannover, Buenteweg 17, D-30559 Hannover, Germany

Abstract

To study the prevalence of the polymorphism in position 200 of the beta-tubulin gene in the mechanism of benzimidazole (BZ) resistance in cyathostomes of horses, an allele-specific PCR was used to detect the genotype of individuals of BZ-susceptible and BZ-resistant populations. The molecular analysis of 100 adults recovered from an anthelmintic-naïve horse revealed 80% homozygous TTC/TTC individuals, 17% heterozygous TTC/TAC and 3% homozygous TAC/TAC. A naturally infected horse was treated with increasing fenbendazole (FBZ) dosages to select a BZ-resistant population of cyathostomes. The PCR based analysis of 3rd-stage larvae (L3) during the experiment revealed a decrease of the homozygous TTC/TTC genotype and an increase in heterozygous TTC/TAC and homozygous TAC/TAC individuals. After treatment 42·3% of the adults (n=104) were homozygous TTC/TTC, 55·8% were heterozygous TTC/TAC and only 1·9% showed the homozygous genotype TAC/TAC. The results of the molecular analysis lead to the proposal that polymorphism within codon 200 is not the only reason for the development of BZ resistance in small strongyles.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

COLES, G. C., BAUER, C., BORGSTEEDE, F. H., GEERTS, S., KLEI, T. R., TAYLOR, M. A. & WALLER, P. J. (1992). World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology 44, 3544.Google Scholar
DRUDGE, J. H. & LYONS, E. T. (1965). Newer developments in helminth control and Strongylus vulgaris research. Proceedings of the Annual Meeting of the American Association of Equine Practitioners 11, 381389.Google Scholar
ELARD, L., COMES, A. M. & HUMBERT, J. F. (1996). Sequences of beta-tubulin cDNA from benzimidazole-susceptible and -resistant strains of Teladorsagia circumcincta, a nematode parasite of small ruminants. Molecular and Biochemical Parasitology 79, 249253.CrossRefGoogle Scholar
ELARD, L. & HUMBERT, J. F. (1999). Importance of the mutation of amino acid 200 of the isotype 1 beta-tubulin gene in the benzimidazole resistance of the small-ruminant parasite Teladorsagia circumcincta. Parasitology Research 85, 452456.CrossRefGoogle Scholar
HERD, R. P. (1990). The changing world of worms: the rise of the cyathostomes and the decline of Strongylus vulgaris. Compendium on Continuing Education for the Practicing Veterinarian 12, 732734.Google Scholar
HUMBERT, J. F. & ELARD, L. (1997). A simple method for rapidly detecting defined point mutations. Technical Tips Online, http://tto.trends.com, T40076.
KELLY, J. D., WEBSTER, J. H., GRIFFIN, D. L., WHITLOCK, H. V., MARTIN, I. C. & GUNAWAN, M. (1981). Resistance to benzimidazole anthelmintics in equine strongyles. 1. Frequency, geographical distribution and relationship between occurrence, animal husbandry procedures and anthelmintic usage. Australian Veterinary Journal 57, 163171.CrossRefGoogle Scholar
KWA, M. S., VEENSTRA, J. G. & ROOS, M. H. (1994). Benzimidazole resistance in Haemonchus contortus is correlated with a conserved mutation at amino acid 200 in beta-tubulin isotype 1. Molecular and Biochemical Parasitology 63, 299303.CrossRefGoogle Scholar
LACEY, E. (1988). The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. International Journal for Parasitology 18, 885936.CrossRefGoogle Scholar
LeJAMBRE, L. F., ROYAL, W. M. & MARTIN, P. J. (1979). The inheritance of thiabendazole resistance in Haemonchus contortus. Parasitology 78, 107119.CrossRefGoogle Scholar
LICHTENFELS, J. R. (1975). Helminths of domestic equids. Proceedings of the Helminthological Society of Washington 42, 192.Google Scholar
LYONS, E. T., TOLLIVER, S. C. & DRUDGE, J. H. (1999). Historical perspective of cyathostomes: prevalence, treatment and control programs. Veterinary Parasitology 85, 97111.CrossRefGoogle Scholar
MARTIN, P. J., ANDERSON, N. & JARRETT, R. G. (1989). Detecting benzimidazole resistance with faecal egg count reduction tests and in vitro assays. Australian Veterinary Journal 66, 236240.CrossRefGoogle Scholar
PAPE, M., SAMSON-HIMMELSTJERNA, G. von & SCHNIEDER, T. (1999). Characterisation of the beta-tubulin gene of Cylicocyclus nassatus. International Journal for Parasitology 29, 19411947.CrossRefGoogle Scholar
PAPE, M., SCHNIEDER, T. & SAMSON-HIMMELSTJERNA, G. von (2002). Investigation of diversity and isotypes of the beta-tubulin cDNA in several small strongyle (Cyathostominae) species. Journal of Parasitology 88, 673677.CrossRefGoogle Scholar
POOK, J. F., POWER, M. L., SANGSTER, N. C., HODGSON, J. L. & HODGSON, D. R. (2002). Evaluation of tests for anthelmintic resistance in cyathostomes. Veterinary Parasitology 106, 331343.CrossRefGoogle Scholar
PRICHARD, R. (2001). Genetic variability following selection of Haemonchus contortus with anthelmintics. Trends in Parasitology 17, 445453.CrossRefGoogle Scholar
REINEMEYER, C. R. (1986). Small strongyles. Recent advances. Veterinary Clinics of North America Equine Practice 2, 281312.CrossRefGoogle Scholar
ROOS, M. H., KWA, M. S. & GRANT, W. N. (1995). New genetic and practical implications of selection for anthelmintic resistance in parasitic nematodes. Parasitology Today 11, 148150.CrossRefGoogle Scholar
SACHS, L. (1992). Angewandte Statistik. Springer, Berlin.CrossRef
SAMSON-HIMMELSTJERNA, G. von, HARDER, A., PAPE, M. & SCHNIEDER, T. (2001). Novel small strongyle (Cyathostominae) beta-tubulin sequences. Parasitology Research 87, 122125.CrossRefGoogle Scholar
SAMSON-HIMMELSTJERNA, G. von, PAPE, M., von WITZENDORFF, C. & SCHNIEDER, T. (2002 a). Allele-specific PCR for the beta-tubulin codon 200 TTC/TAC polymorphism using single adult and larval small strongyle (Cyathostominae) stages. Journal of Parasitology 88, 254257.Google Scholar
SAMSON-HIMMELSTJERNA, G. von, von WITZENDORFF, C., SIEVERS, G. & SCHNIEDER, T. (2002 b). Comparative use of faecal egg count reduction test, egg hatch assay and beta-tubulin codon 200 genotyping in small strongyles (Cyathostominae) before and after benzimidazole treatment. Veterinary Parasitology 108, 227235.Google Scholar
SCHMIDT, U. (1971). Parasitologische Kotuntersuchung durch ein neues Verdünnungsverfahren. Tierärztliche Umschau 26, 229230.Google Scholar
WHITLOCK, H. V., KELLY, J. D., PORTER, C. J., GRIFFIN, D. L. & MARTIN, I. C. A. (1980). In vitro field screening for anthelmintic resistance in strongyles of sheep and horses. Veterinary Parasitology 7, 215232.CrossRefGoogle Scholar