Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-14T14:33:07.921Z Has data issue: false hasContentIssue false

Antigens of Plasmodiwn falciparum blood stages with clinical interest cloned and expressed in E. coli

Published online by Cambridge University Press:  23 August 2011

J. Scaife
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR
N. Bone
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR
M. Goman
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR
R. Hall
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR
I. A. Hope
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR
J. E. Hyde
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR
G. Langsley
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR
M. Mackay
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR
P. Oquendo
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR
D. Simmons
Affiliation:
Department of Molecular Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR

Extract

The human malaria parasite, Plasmodium falciparum, is currently being actively studied by molecular biologists. It is hoped that the use of recombinant DNA techniques in this area will give new insights into the biology of the organism and, at the same time, provide new approaches to diagnosis and vaccine development.

Our own studies employ the blood stages of the parasite and cover three main areas: enzymes of importance in parasite metabolism; antigens of potential use in a subunit vaccine; and repetitive DNA as a probe able to distinguish genetically different isolates of P. falciparum and as a species-specific diagnostic tool in human and mosquito infections.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amann, E., Brositts, J. & Ptashne, M. (1983). Vectors bearing a hybrid trp–lac promoter useful for regulated expression of cloned genes in Escherichia coli. Gene 25, 167–78.Google ScholarPubMed
Bachmann, B. J. & Low, K. B. (1980). Linkage map of E. coli, Edition 6. Microbiological Reviews 44, 156.CrossRefGoogle ScholarPubMed
Ballou, W. R., Rothbard, J., Wirtz, R. A., Gordon, D. M., Williams, J. S., Gore, R. W., Schneider, I., Hollingdale, M. R., Beaudoin, R. L., Maloy, W. L., Miller, L. H. & Hockmeyer, W. T. (1985). Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science 228, 996–9.CrossRefGoogle ScholarPubMed
Birnstiel, M. L., Busslinger, M. & Strub, K. (1985). Transcription termination and 3' processing: the end is in site! Cell 41, 349–59.CrossRefGoogle ScholarPubMed
Bolivar, F., Rodriguez, R. L., Greene, P., Betlach, M., Heykener, H., Boyer, H. W., Crosa, J. H. & Falkow, S. (1977). Construction and characterisation of new cloning vehicles. II. A multipurpose cloning system. Gene 2, 95113.CrossRefGoogle Scholar
Boyle, D. B., Newbold, C. I., Smith, C. C. & Brown, K. N. (1982). Monoclonal antibodies protecting in vivo against the rodent malaria, Plasmodium chabaudi, recognise a 250000 dalton parasite peptide. Infection and Immunity 38, 94102.CrossRefGoogle Scholar
Brutlag, D. L. (1980). Molecular arrangement and evolution of heterochromatic DNA. Annual Reviews of Genetics 14, 121–44.CrossRefGoogle ScholarPubMed
Carter, R. & McGregor, I. A. (1973). Enzyme variation in Plasmodium falciparum in The Gambia. Transactions of the Royal Society of Tropical Medicine and Hygiene 67, 830–7.CrossRefGoogle ScholarPubMed
Carter, R. & Walliker, D. (1977). Biochemical markers for strain differentiation in malaria parasites. Bulletin of the World Health Organization 55, 339–45.Google Scholar
Cheung, A., Shaw, A. R., Leban, J. & Perrin, L. (1985). Cloning and expression in Escherichia coli of a surface antigen of Plasmodium falciparum merozoites. The EMBO Journal 4, 1007–12.CrossRefGoogle ScholarPubMed
Cochrane, A. H., Santoro, F., Nussenzweig, V., Gwadz, R. & Nussenzweig, R. S. (1982). Monoclonal antibodies identify the protective antigens of sporozoites by Plasmodium knowlesi. Proceedings of the National Academy of Sciences, USA 79, 5651–5.CrossRefGoogle ScholarPubMed
Cornelissen, A.W.C.A., Langsley, G., Walliker, D. & Scaife, J. G. (1985). Gametocytogenesis and ribosomal rRNA gene organisation in the rodent malarias P. chabaudi and P. berghei. Molecular and Biochemical Parasitology 14, 165–74.CrossRefGoogle Scholar
Dame, J. B., Williams, J. L., MoCutchan, J. F., Weber, J. L., Wirtz, R. A., Hockmeyer, W. T., Maloy, W. L., Haynes, J. D., Schneider, I., Roberts, D., Sanders, G. S., Reddy, E. P., Diggs, C. L. & Miller, L. H. (1984). Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite, Plasmodium falciparum. Science 225, 593–9.CrossRefGoogle ScholarPubMed
Dore, E., Birago, C., Frontali, C. & Battaglia, P. A. (1980). Kinetic complexity and repetitivity of Plasmodium berghei DNA. Molecular and Biochemical Parasitology 1, 199208.CrossRefGoogle Scholar
Enea, V., Arnot, D., Schmidt, E., Cochrane, A., Gwadz, R. & Nussenzweig, R. (1984). Circumsporozoite gene of P. cynomolgi (Gombak): cDNA cloning and expression of the repetitive circumsporozoite epitope. Proceedings of the National Academy of Sciences, USA 81, 7520–4.CrossRefGoogle ScholarPubMed
Epstein, N., Miller, L., Kaushel, D. C., Iroka, J. U., Rener, J., Russell, J. H., Asofsky, R., Aikawa, M. & Hess, R. L. (1981). Monoclonal antibodies against a specific determinant on malarial (P. knowlesi) merozoites block erythrocyte invasion. Journal of Immunology 127, 212–17.CrossRefGoogle ScholarPubMed
Franzen, L., Shabo, R., Perlmann, H., Wigzell, H., Westin, G., Aslund, L., Persson, T. & Pettersson, U. (1984). analysis of clinical specimens by hybridisation with probe containing repetitive DNA from Plasmodium falciparum. The Lancet 1, 525–8.CrossRefGoogle ScholarPubMed
Goman, M., Langsley, G., Hyde, J. E., Yankofsky, N. K., Zolg, J. W. & Scaife, J. G. (1982). The establishment of genomic DNA libraries for the human malarial parasite P. falciparum and identification of individual clones by hybridisation. Molecular and Biochemical Parasitology 5, 391400.CrossRefGoogle Scholar
Hall, F. R., Hyde, J. E., Goman, M., Simmons, D. L., Hope, I. A., Mackay, M., Scaife, J., Merkli, B., Richle, R. & Stocker, J. (1984). Major surface antigen of a human malaria parasite cloned and expressed in bacteria. Nature, London 311, 379–82.CrossRefGoogle ScholarPubMed
Hall, R., Mcbride, J., Morgan, G., Tait, A., Zolg, J. W., Walliker, D. & Scaife, J. (1983). Antigens of the erythrocytic stages of the human malaria parasite Plasmodium falciparum detected by monoclonal antibodies. Molecular and Biochemical Parasitology 7, 247–65.CrossRefGoogle ScholarPubMed
Hall, R., Osland, A., Hyde, J. E., Simmons, D. L., Hope, I. A. & Scaife, J. G. (1984 a). Processing, polymorphism and biological significance of P190, a major surface antigen of the erythrocytic forms of Plasmodium falciparum. Molecular and Biochemical Parasitology 11, 6181.CrossRefGoogle Scholar
Hensel, R., Mayer, U. & Yang, D. (1980). The complete primary structure of the allosteric L-LD H of Lactobacillus casei. European Journal of Biochemistry 134, 503–11.CrossRefGoogle Scholar
Holder, A. A. & Freeman, R. R. (1981). Immunisation against blood-stage rodent malaria using purified parasite antigens. Nature, London 294, 361–4.CrossRefGoogle ScholarPubMed
Holder, A. A. & Freeman, R. R. (1982). Biosynthesis and processing of a Plasmodium falciparum schizont antigen recognised by human serum and monoclonal antibody. Journal of Experimental Medicine 156, 1528–38.CrossRefGoogle ScholarPubMed
Holder, A. A. & Freeman, R. R. (1984). The three major antigens on the surface of P. falciparum merozoites are derived from a single high molecular weight precursor. Journal of Experimental Medicine 160, 624–9.CrossRefGoogle ScholarPubMed
Hope, I (1984). Investigation of potentially protective antigens of Plasmodium falciparum. Ph.D. thesis, University of Edinburgh.Google Scholar
Hope, T. A., Hall, R., Simmons, D. L., Hyde, J. E. & Scaife, J. G. (1984). Evidence for immunological cross-reaction between sporozoites and blood stages of a human malaria parasite. Nature, London 308, 191–4.CrossRefGoogle ScholarPubMed
Hope, I. A., Mackay, M., Hyde, J. E., Goman, M. & Scaife, J. (1985). The gene for an exported antigen of the malaria parasite Plasmodium falciparum cloned and expressed in Escherichia coli. Nucleic Acids Research 13, 369–79.CrossRefGoogle ScholarPubMed
Howard, R. J., Lyon, J. A., Diggs, L. L., Haynes, J. H., Leech, J. W., Barnwell, S. B., Aley, M., Aikawa, M. & Miller, L. H. (1984). Localisation of the major Plasmodium falciparum glycoprotein on the surface of mature intra-erythrocytic trophozoites and schizonts. Molecular and Biochemical Parasitology 11, 349–62.CrossRefGoogle Scholar
Hyde, J. E., Goman, M., Hall, R., Osland, A., Hope, I. A., Langsley, G., Zolg, J. W. & Scaife, J. G. (1984). Characterisation and translation studies of messenger RNA from the human malaria parasite Plasmodium falciparum and construction of a cDNA library. Molecular and Biochemical Parasitology 10, 269–85.CrossRefGoogle ScholarPubMed
Kemp, D. J., Coppel, R. L., Cowman, A. F., Saint, R. B., Brown, G. V. & Anders, R. F. (1983). Expression of P. falciparum blood stage antigens in E. coli. Detection with antibodies from immune humans. Proceedings of the National Academy of Sciences, USA 80, 3787–91.CrossRefGoogle Scholar
Langer, P. R., Waldrop, A. A. & Ward, D. C. (1981). Enzymatic synthesis of biotin-labelled polynucleotides: novel nucleic acid affinity probes. Proceedings of the National Academy of Sciences, USA 78, 6633–7.CrossRefGoogle Scholar
Leary, J. J., Brigati, D. J. & Ward, D. C. (1983). Rapid and sensitive colorimetric method for visualising biotin-labelled DNA probes to DNA or RNA immobilised on nitrocellulose: bio-blots. Proceedings of the National Academy of Sciences, USA 80, 4045–9.CrossRefGoogle ScholarPubMed
Li, S. S-L., Feldman, R. J., Okabe, M., & C-C. E., Pan (1983). Molecular features and immunological properties of lactate dehydrogenases. Journal of Biological Chemistry 258, 7017–28.CrossRefGoogle Scholar
McBride, J. S., Newbold, C. I. & Anand, R. (1985). Polymorphism of a high molecular weight schizont antigen of the human malaria parasite P. falciparum. Journal of Experimental Medicine 161, 160–80.CrossRefGoogle Scholar
McBride, J. S., Walliker, D. & Morgan, G. (1982). Antigenic diversity in the human malaria parasite Plasmodium falciparum. Science 217, 254–7.CrossRefGoogle ScholarPubMed
Messing, J. & Vieira, J. (1982). A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19, 269–76.CrossRefGoogle ScholarPubMed
Murray, N. (1983). Phage lambda and molecular cloning. In Bacteriophage Lambda, vol. 2, (ed. Hendrix, R., Weisberg, R. A. and Stahl, F. W.), pp. 395432. New York: Cold Spring Harbor.Google Scholar
Nardin, E. H., Nussenzweig, V., Nussenzweig, R. S., Collins, W. E., Tranakchit Harinsuta, K., Tapchaisri, P. & Chomcharn, Y. (1982). Circumsporozoite proteins of human malaria parasites P. falciparum and P. vivax. Journal of Experimental Medicine 156, 2030.CrossRefGoogle Scholar
Odink, K. G., Lockyer, M. J., Nicholls, A., Hillman, Y., Freeman, R. R. & Holder, A. A. (1984). Expression of cloned DNA for a major surface antigen of Plasmodium falciparum merozoites. FEBS Letters 173, 108–12.CrossRefGoogle Scholar
Oquendo, P., Goman, M., Mackay, M., Langsley, G., Walliker, D. & Scaife, J. (1985). Characterisation of a repetitive DNA sequence from the malaria parasite Plasmodium falciparum. Molecular and Biochemical Parasitology (in the Press).Google Scholar
Ozaki, L. S., Svec, P., Nussenzweig, R. S., Nussenzweig, V. & Godson, G. N. (1983). Structure of the Plasmodium knowlesi gene coding for the circumsporozoite protein. Cell 34, 815–22.CrossRefGoogle ScholarPubMed
Pearse, B. M. F. & Bretscher, M. S. (1981). Membrane recycling by coated vesicles. Annual Reviews of Biochemistry 50, 85101.CrossRefGoogle ScholarPubMed
Perlman, D. & Halvorson, H. O. (1983). A putative signal peptidase recognition site and sequence in eukaryotic and prokaryotic signal peptides. Journal of Molecular Biology 167, 391409.CrossRefGoogle ScholarPubMed
Perrin, L. H., Merkli, B., Loche, M., Chizzolini, C., Smart, J. & Richle, R. (1984). Antimalarial immunity in Saimiri monkeys. Immunisation with surface components of asexual blood stages. Journal of Experimental Medicine 160, 441–51.CrossRefGoogle ScholarPubMed
Perrin, L. H., Ramirez, L., Er-Hasiang, & Lambert, P. H. (1980). Plasmodium falciparum: characterisation of defined antigens by monoclonal antibodies. Clinical and Experimental Immunology 41, 91–6.Google ScholarPubMed
Playfair, J. H. L., De Souza, J. B., Freeman, R. R. & Holder, A. A. (1985). Vaccination with a purified blood stage malaria antigen in mice: correlation of protection with T-cell mediated immunity. Clinical and Experimental Immunology 62 (in the Press).Google Scholar
Pollack, Y., Katzen, A. L., Spira, D. T. & Golenser, J. (1982). The genome of Plasmodium falciparum: DNA base composition. Nucleic Acids Research 10, 539–46.CrossRefGoogle ScholarPubMed
Potter, S. S. (1982). DNA sequence of a foldback transposable element in Drosophila. Nature, London 297, 201–4.CrossRefGoogle ScholarPubMed
Pringle, G. (1966). A quantitative study of naturally-acquired malaria infections in Anopheles gambiae and Anopheles funestus in a highly malarious area of East Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene 60, 626–32.CrossRefGoogle Scholar
Rigby, P. W. J., Dieckmann, M., Rhodes, C. & Berg, P. (1977). Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase. Journal of Molecular Biology 113, 237–51.CrossRefGoogle ScholarPubMed
Sabatini, D. D., Kreibich, G., Morimoto, T. & Adesnik, M. (1982). Mechanisms for the incorporation of proteins in membranes and organelles. Journal of Cellular Biology 92, 122.CrossRefGoogle ScholarPubMed
Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 5463–7.CrossRefGoogle ScholarPubMed
Santoro, F., Cochrane, A. H., Nussenzweig, V., Nardin, F. H., Nussenzweig, R. S., Gwadz, R. W. & Ferreira, A. (1983). Structural similarities among the protective antigens of sporozoites from different species of malaria parasites. Journal of Biological Chemistry 258, 3341–5.CrossRefGoogle ScholarPubMed
Sherman, I. R. (1979). Biochemistry of Plasmodium (malarial parasites). Microbiological Reviews 43, 453–95.CrossRefGoogle ScholarPubMed
Simmons, D. L., Hyde, J. E., Mackay, M., Goman, M. & Scaife, J. (1985). Cloning studies on the gene coding for L (+) lactate dehydrogenase of Plasmodium falciparum. Molecular and Biochemical Parasitology 15, 231–43.CrossRefGoogle ScholarPubMed
Smith, G. E. & Summers, M. D. (1980). The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Analytical Biochemistry 109, 123–9.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.CrossRefGoogle ScholarPubMed
Van Der Jagt, D. L., Hunsaker, L. & Heidrich, J. E. (1981). Partial purification and characterisation of lactate dehydrogenase from P. falciparum. Molecular and Biochemical Parasitology 4, 255–64.CrossRefGoogle Scholar
Von Heijne, G. (1985). Signal sequences: the limits of variation. Journal of Molecular Biology 184, 99105.CrossRefGoogle ScholarPubMed
Young, R. A. & Davis, R. W. (1983). Efficient isolation of genes using antibody probes. Proceedings of the National Academy of Sciences, USA 80, 1194–8.CrossRefGoogle ScholarPubMed
Zavala, F., Tam, J. P., Hollingdale, M. R., Cochrane, A. H., Quakyi, I., Nussenzweig, R. S. & Nussenzweig, V. (1985). Rationale for development of a synthetic vaccine against Plasmodium falciparum malaria. Science 228, 1436–10.CrossRefGoogle ScholarPubMed
Zolg, J. W., Macleod, A. J., Scaife, J. G. & Beaudoin, R. L. (1984). The accumulation of lactic acid and its influence on the growth of Plasmodium falciparum in synchronised cultures. In Vitro 20, 205–15.CrossRefGoogle Scholar