Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-16T16:48:17.864Z Has data issue: false hasContentIssue false

Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida)

Published online by Cambridge University Press:  09 August 2007

G. F. SANTORO
Affiliation:
Departamento de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz/FIOCRUZ, 21040-900 Rio de Janeiro, RJ, Brazil
M. G. CARDOSO
Affiliation:
Departamento de Química, Universidade Federal de Lavras (UFLA), Caixa Postal 3037, 37200-000 Lavras, MG, Brazil Universidade Vale do Rio Verde (UNINCOR), Avenida Castelo Branco 82, 37410-000Três Corações, Minas Gerais, MG, Brazil
L. G. L. GUIMARÃES
Affiliation:
Departamento de Química, Universidade Federal de Lavras (UFLA), Caixa Postal 3037, 37200-000 Lavras, MG, Brazil
J. M. FREIRE
Affiliation:
Departamento de Química, Universidade Federal de Lavras (UFLA), Caixa Postal 3037, 37200-000 Lavras, MG, Brazil
M. J. SOARES*
Affiliation:
Departamento de Ultra-estrutura e Biologia Celular, Instituto Oswaldo Cruz/FIOCRUZ, 21040-900 Rio de Janeiro, RJ, Brazil Instituto de Biologia Molecular do Paraná, 81350-010 Curitiba, PR, Brazil
*
*Corresponding author: Instituto de Biologia Molecular do Paraná, Rua Prof. Algacyr Munhoz Maeder 3.775, Cidade Industrial de Curitiba, 81.350-010 Curitiba, Paraná, Brazil. Tel: +55 41 3316 3230. Fax: +55 41 3316 3267. E-mail: maurilio@tecpar.br

Summary

This study analyses the anti-proliferative effect of lemongrass essential oil and its main constituent (citral) on all 3 evolutive forms of Trypanosoma cruzi. Steam distillation was used to obtain lemongrass essential oil, with chemical composition determined by gas chromatography (GC) and GC coupled to mass spectrometry (GC-MS). The IC50/24 h (concentration that reduced the parasite population by 50%) of the oil and of citral upon T. cruzi was determined by cell counting in a Neubauer chamber, while morphological alterations were visualized by scanning and transmission electron microscopy. Treatment with the essential oil resulted in epimastigote growth inhibition with IC50=126·5 μg/ml, while the IC50 for trypomastigote lysis was 15·5 μg/ml. The IC50/48 h for the Association Index (% macrophage infection×number of amastigotes per cell) was 5·1 μg/ml, with a strong inhibition of intracellular amastigote proliferation. Ultrastructural analysis demonstrated cytoplasmic and nuclear extraction, while the plasma membrane remained morphologically preserved. Our data show that lemongrass essential oil is effective against T. cruzi trypomastigotes and amastigotes, and that its main component, citral, is responsible for the trypanocidal activity. These results indicate that essential oils can be promising anti-parasitic agents, opening perspectives to the discovery of more effective drugs of vegetal origin for treatment of parasitic diseases. However, additional cytotoxicity experiments on different cell lines and tests in a T. cruzi-mouse model are needed to support these data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, R. P. (1995). Identification of Essential Oils Components by Gas Chromatography/Mass Spectroscopy. Allured Publishing Corporation, Carol Stream, IL, USA.Google Scholar
Camargo, E. C. (1964). Growth and differentiation in Trypanosoma cruzi. Origin of metacyclic trypanosomes in liquid media. Revista do Instituto de Medicina Tropical de São Paulo 6, 93100.Google ScholarPubMed
Carlini, E. A., Contar, J. D. P., Silva-Filho, A. R., Silveira-Filho, N. G., Frochtengarten, M. L. and Bueno, O. F. (1986). Pharmacology of lemongrass (Cymbopogon citratus Stapf). I. Effects of teas prepared from the leaves on laboratory animals. Journal of Ethnopharmacology 17, 3764.CrossRefGoogle ScholarPubMed
Craveiro, A. A., Fernandes, A. G., Andrade, C. H. S., Matos, F. J. A., Alencar, J. W. and Machado, M. I. L. (1981). Óleos Essenciais de Plantas do Nordeste. Edições UFC, Fortaleza, BR.Google Scholar
Cimanga, K., Kambu, K., Tona, L., Apers, S., De Bruyne, T., Hermans, N., Totte, J., Pieters, L. and Vlietinck, A. J. (2002). Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. Journal of Ethnopharmacology 79, 213220.CrossRefGoogle ScholarPubMed
Holetz, F. B., Ueda-Nakamura, T., Filho, B. P. D., Cortez, D. A. G., Morgado-Díaz, J. A. and Nakamura, C. V. (2003). Effect of essential oil of Ocimum gratissimum on the trypanosomatid Herpetomonas Samuelpessoai. Acta Protozoologica 42, 269276.Google Scholar
Ibrahim, D. (1992). Antimicrobial activity of the essential oil of the local serrai, Cymbopogon citratus. Journal of Biosciences 3, 8790.Google Scholar
Kurita, N., Miyaji, M., Kurane, R., Takahara, Y. and Ichimura, K. (1981). Antifungal activity of components of essential oils. Agricultural and Biological Chemistry 45, 945952.Google Scholar
Meirelles, R. M. S. and Soares, M. J. (2001). Quick fixation of eukaryotic cell suspension for routine transmission electron microscopy. Acta Microscopica 10, 1922.Google Scholar
Mikus, J., Harkenthal, M., Steverding, D. and Reichling, J. (2000). In vitro effect of essential oils and isolated mono- and sesquiterpenes on Leishmania major and Trypanosoma brucei. Planta Medica 66, 366368.CrossRefGoogle ScholarPubMed
Mishra, A. K. and Dubey, N. K. (1994). Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Applied and Environmental Microbiology 60, 11011105.CrossRefGoogle ScholarPubMed
Monzote, L., Montalvo, A. M., Almanonni, S., Scull, R., Miranda, M. and Abreu, J. (2006). Activity of the essential oil from Chenopodium ambrosioides grown in Cuba against Leishmania amazonensis. Chemotherapy 52, 130136.CrossRefGoogle ScholarPubMed
Onawunmi, G. O. (1989). Evaluation of the antimicrobial activity of citral. Letters in Applied Microbiology 9, 105108.CrossRefGoogle Scholar
Onawunmi, G. O., Yisak, W. A. and Ogunlana, E. O. (1984). Antibacterial constituents in the essential oil of Cymbopogon citratus (DC.) Stapf. Journal of Ethnopharmacology 12, 279286.CrossRefGoogle ScholarPubMed
Pedroso, R. B., Ueda-Nakamura, T., Dias Filho, B. P., Cortez, D. A. G., Cortez, L. E. R., Morgado-Díaz, J. A. and Nakamura, C. V. (2006). Biological activities of essential oil obtained from Cymbopogon citratus on Crithidia deanei. Acta Protozoologica 45, 231240.Google Scholar
Rosa, M. S. S., Mendonça-Filho, R. R., Bizzo, H. R., Rodrigues, I. A., Soares, R. M., Souto-Padrón, T., Alviano, C. S. and Lopes, A. H. (2003). Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrobial Agents and Chemotherapy 47, 18951901.CrossRefGoogle Scholar
Saeidnia, S., Gohari, A. R., Uchiyama, N., Ito, M., Honda, G. and Kiuchi, F. (2004). Two new monoterpene glycosides and trypanocidal terpenoids from Dracocephalum kotschyi. Chemical and Pharmaceutical Bulletin (Tokyo) 52, 12491250.CrossRefGoogle ScholarPubMed
Santoro, G. F., Cardoso, M. G., Guimarães, L. G. L., Salgado, A. P. S., Menna-Barreto, R. F. S. and Soares, M. J. (2007). Effect of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) essential oils on Trypanosoma cruzi (Protozoa: Kinetoplastida) growth and ultrastructure. Parasitology Research 100, 783790.CrossRefGoogle ScholarPubMed
Silva, L. H. P. and Nussenzweig, V. (1953). Sobre uma cepa de Trypanosoma cruzi altamente virulenta para o camundongo branco. Folia Clinica et Biologica (Sao Paulo) 20, 191208.Google Scholar
Tchoumbougnang, F., Zollo, P. H., Dagne, E. and Mekonnen, Y. (2005). In vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Medica 71, 2023.CrossRefGoogle ScholarPubMed
Ueda-Nakamura, T., Mendonça-Filho, R. R., Morgado-Diaz, J. A., Maza, P. K., Dias Filho, B. P., Cortez, D. A. G., Alviano, D. S., Rosa, M. S., Lopes, A. H., Alviano, C. S. and Nakamura, C. V. (2006). Antileishmanial activity of Eugenol-rich essential oil from Ocimum gratissimum. Parasitology International 55, 99105.CrossRefGoogle ScholarPubMed
Valentin, A., Pelissier, Y., Benoit, F., Marion, C., Kone, D., Mallie, M., Bastide, J. M. and Bessiere, J. M. (1995). Composition and antimalarial activity in vitro of volatile components of Lippia multiflora. Phytochemistry 40, 14391442.CrossRefGoogle ScholarPubMed
Viollon, C. and Chaumont, J. P. (1994). Antifungal properties of essential oils and their main components upon Cryptococcus neoformans. Mycopathologia 128, 151153.CrossRefGoogle ScholarPubMed
Wannissom, B., Jarikasem, S. and Soontorntanasart, T. (1996). Antifungal activity of lemon grass oil and lemon grass oil cream. Phytotherapy Research 10, 551554.3.0.CO;2-Q>CrossRefGoogle Scholar
World Health Organization (2002). Control of Chagas Diseases: Second Report of the WHO Expert Committee. WHO Technical Report Series No. 905. World Health Organization, Geneva.Google Scholar