Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-07T13:11:14.927Z Has data issue: false hasContentIssue false

Asparaginyl endopeptidase activity in adult Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

J. P. Dalton
Affiliation:
Molecular Parasitology Unit, Queensland Institute of Medical Research, The Bancroft Centre, Post Office, Royal Brisbane Hospital, Queensland 4029, Australia School of Biological Sciences, Dublin City University, Dublin 9, Republic of, Ireland
L. Hola-Jamriska
Affiliation:
Molecular Parasitology Unit, Queensland Institute of Medical Research, The Bancroft Centre, Post Office, Royal Brisbane Hospital, Queensland 4029, Australia
P. J. Brindley
Affiliation:
Molecular Parasitology Unit, Queensland Institute of Medical Research, The Bancroft Centre, Post Office, Royal Brisbane Hospital, Queensland 4029, Australia

Summary

Sequence comparisons have recently shown that the Schistosoma mansoni protein Sm32 is similar to asparaginyl endo-proteinases, a novel family of cysteine proteinases, of which the legumains rom legumes are the best characterized. By synthesizing and employing fluorogenic peptide substrates for the specific detection of asparaginyl endopeptidases, we have identified this type of activity in extracts of adult S. mansoni. The S. mansoni activity is similar to that of the legumains in its substrate specificity and sensitivity to thiol inhibitors, but differs in its pH and temperature optima for activity. In contrast, unlike the legumains, the schistosome asparaginyl endopeptidase activity is not activated by the reducing agent dithiothreitol. As suggested for legumains, Sm32 may function in the post-translational modification processes that regulate the activity of other molecules.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, Y., Shirane, K., Yokasawa, H., Matsushita, H., Mitta, M., Kato, I. & Ishii, S.-I. (1993). Asparaginyl endopeptidase of jack bean seeds: purification, characterization, and high utility in protein sequence analysis. Journal of Biological Chemistry 268, 3525–9.CrossRefGoogle ScholarPubMed
Bogitsh, B. J., Kirschner, K. F. & Rotmans, J. P. (1992). Schistosoma japonicum: immunoinhibitory studies on hemoglobin digestion using heterologous antiserum to bovine cathepsin D. Journal of Parasitology 78, 454–9.CrossRefGoogle ScholarPubMed
Davis, A. H., Nanduri, J. & Watson, D. C. (1987). Cloning and gene expression of Schistosoma mansoni protease. Journal of Biological Chemistry 262, 12851–5.CrossRefGoogle Scholar
Dalton, J. P., Smith, A. M., Clough, K. A. & Brindley, P. J. (1995). Digestion of haemoglobin by schistosomes: 35 years on. Parasitology Today (11, 273314)CrossRefGoogle Scholar
Gotz, B. & Klinkert, M.-O. (1993). Expression and partial characterization of a cathepsin B-like enzyme (Sm31) and a proposed ‘haemoglobinase’ (Sm32) from Schistosoma mansoni. The Biochemical Journal 290, 801–6.CrossRefGoogle Scholar
Kembhavi, A. A., Buttle, D. J., Knight, C. G. & Barrett, A. J. (1993). The two cysteine endopeptidases of legume seeds: purification and characterisation by use of specific fluorometric assays. Archives of Biochemistry and Biophysics 303, 208–13.CrossRefGoogle Scholar
Klinkert, M.-O., Felleisen, R., Link, G., Ruppel, A. & Beck, E. (1989) Primary structure of Sm31/32 diagnostic proteins of Schistosoma mansoni and their identification as proteases. Molecular and Biochemical Parasitology 33, 113–22.CrossRefGoogle Scholar
Klinkert, M.-Q., Ruppel, A. & Beck, E. (1987). Cloning of the diagnostic 31/32 kilodalton antigens of Schistosoma mansoni. Molecular and Biochemical Parasitology 25, 247–55.CrossRefGoogle ScholarPubMed
Ruppel, A., Diesfeld, H. J. & Rothers, U. (1985). Immunoblot analysis of Schistosoma mansoni antigens with sera of schistosomiasis patients: diagnostic potential of an adult schistosome polypeptide. Clinical and Experimental Immunology 62, 499506.Google Scholar
Scott, M. P., Jung, R., Muntz, K. & Nielson, N. C. (1992). A protease responsible for post-translational cleavage of a conserved Asn-Gly linkage in glycinin, the major seed storage protein of soybean. Proceedings of the National Academy of Sciences, USA 89, 658662.CrossRefGoogle ScholarPubMed
Smith, A. M., Dalton, J. P., Clough, K. A., Kilbane, C. L., Harrop, S. A., Hole, N. & Brindley, P. J. (1994). Adult Schistosoma mansoni express cathepsin L proteinase activity. Molecular and Biochemical Parasitology 67, 1119.CrossRefGoogle Scholar
Takeda, O., Miura, Y., Mitta, M., Matsushita, H., Kato, I., Abe, Y., Yokosawa, H. & Ishi, S.-I. (1994). Isolation and analysis of cDNA encoding a precursor of Canavalia ensiformis asparaginyl endopeptidase (legumain). Journal of Biochemistry 116, 541–6.CrossRefGoogle ScholarPubMed
Timms, A. R. & Bueding, E. (1959). Studies of a proteolytic enzyme from Schistosoma mansoni. British Journal of Pharmacology 14, 6873.Google ScholarPubMed