Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-01T14:38:16.845Z Has data issue: false hasContentIssue false

Comparative analyses of the neuropeptide F (NPF)- and FMRFamide-related peptide (FaRP)-immunoreactivities in Fasciola hepatica and Schistosoma spp

Published online by Cambridge University Press:  06 April 2009

N. J. Marks
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University of Belfast, Belfast BT7 INN, UK
D. W. Halton
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University of Belfast, Belfast BT7 INN, UK
A. G. Maule
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University of Belfast, Belfast BT7 INN, UK
G. P. Brennan
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University of Belfast, Belfast BT7 INN, UK
C. Shaw
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University of Belfast, Belfast BT7 INN, UK
V. R. Southgate
Affiliation:
Department of Zoology, The Natural History Museum, London SW7 5BD, UK
C. F. Johnston
Affiliation:
Comparative Neuroendocrinology Research Group, The Queen's University of Belfast, Belfast BT7 INN, UK

Summary

Immunochemical techniques were used to determine the distribution, chemical characteristics and relative abundance of immunoreactivity (IR) to two native platyhelminth neuropeptides, neuropeptide F (NPF) (Moniezia expansa) and the FMRFamide-related peptide (FaRP), GNFFRFamide, in the trematodes, Fasciola hepatica and Schistosoma mansoni; the larger S. margrebowiei was used in the chemical analysis. Extensive immunostaining for the two peptides was demonstrated throughout the nervous systems of both F. hepatica and S. mansoni, with strong IR also in the innervation of muscular structures, including those associated with the egg-forming apparatus. The patterns of immunostaining were similar to those previously described for the vertebrate neuropeptide Y superfamily of peptides and for FMRFamide. Ultra-structurally, gold labelling of NPF- and GNFFRFamide-IRs was localized exclusively to the contents of secretory vesicles in the axons and somatic cytoplasm of neurones. Double-labelling experiments showed an apparent homogeneity of antigenic sites, in all probability due to the demonstrated cross-reactivity of the FaRP antiserum with NPF. Radio-immunoassay of acid-ethanol extracts of the worms detected 8·3 pmol/g and 4·7 pmol/g equivalents of NPF- and FMRFamide-IRs, respectively, for F. hepatica, and corresponding values of 4·9 pmol/g and 4·3 pmol/g equivalents for S. margrebowiei. Gel-permeation chromatography resolved IR to both peptides in discrete peaks and these eluted in similar positions to synthetic NPF (M. expansa) and GNFFRFamide, respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basch, P. F. & Gupta, B. C. (1988). Immunocytochemical localization of regulatory peptides in six species of trematode parasites. Comparative Biochemistry and Physiology 91C, 565–70.Google ScholarPubMed
Brownlee, D. J. A., Brennan, G. P., Halton, D. W., Fairweather, I. & Shaw, C. (1994). Ultrastructural localisation of FMRFamide- and pancreatic polypeptide-immunoreactivities within the central nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology Research 80, 117–24.CrossRefGoogle ScholarPubMed
Coons, A. H., Leduc, E. H. & Connolly, J. M. (1955). Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. Journal of Experimental Medicine 102, 4960.CrossRefGoogle Scholar
Day, T. A., Maule, A. G., Shaw, C., Halton, D. W., Moore, S., Bennett, J. L. & Pax, R. A. (1994). Platyhelminth FMRFamide-related peptides (FaRPs) contract Schistosoma mansoni (Trematoda: Digenea) muscle fibres in vitro. Parasitology 109, 455–9.CrossRefGoogle ScholarPubMed
Gönnert, R. (1962). Histologische Untersuchungen über den Feinbau der Einbildungsstätte (oogenotop) von Fasciola hepatica. Zeitschrift für Parasitenkunde 21, 475–92.CrossRefGoogle Scholar
Halton, D. W., Shaw, C., Maule, A. G. & Smart, D. (1994). Regulatory peptides in helminth parasites. Advances in Parasitology 34, 163—227.Google ScholarPubMed
Magee, R. M., Fairweather, I., Johnston, C. F., Halton, D. W. & Shaw, C. (1989). Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology 98, 227–38.CrossRefGoogle ScholarPubMed
Magee, R. M., Shaw, C., Fairweather, I., Thim, L., Johnston, C. F. & Halton, D. W. (1991). Isolation and partial sequencing of a pancreatic polypeptide-like neuropeptide from the liver fluke, Fasciola hepatica. Comparative Biochemistry and Physiology 100C, 507–11.Google ScholarPubMed
Mansour, T. E. (1984). Serotonin receptors in parasitic worms. Advances in Parasitology 23, 136.Google ScholarPubMed
Maule, A. G., Halton, D. W. & Shaw, C. (1995). Neuropeptide F: a ubiquitous invertebrate neuromediator ? Hydrobiologia (in the Press).CrossRefGoogle Scholar
Maule, A. G., Shaw, C., Halton, D. W. & Thim, L. (1993). GNFFRFamide: a novel FMRFamide- immunoreactive peptide isolated from the sheep tapeworm, Moniezia expansa. Biochemical and Biophysical Research Communications 193, 1054–60.CrossRefGoogle ScholarPubMed
Maule, A. G., Shaw, C., Halton, D. W., Curry, W. J. & Thim, L. (1994). RYIRFamide: a turbellarian FMRFamide-related peptide (FaRP). Regulatory Peptides 50, 3743.CrossRefGoogle ScholarPubMed
Maule, A. G., Shaw, C., Halton, D. W., Thim, L., Johnston, C. F., Fairweather, I. & Buchanan, K. D. (1991). Neuropeptide F: a novel parasitic flatworm regulatory peptide from Moniezia expansa (Cestoda: Cyclophyllidea). Parasitology 102, 309–16.CrossRefGoogle Scholar
Maule, A. G., Shaw, C., Halton, D. W., Brennan, G. P., Johnston, C. F. & Moore, S. (1992). Neuropeptide F (Moniezia expansa): localization and characterization using specific antisera. Parasitology 105, 505—12.CrossRefGoogle ScholarPubMed
Rajpara, S. M., Garcia, P. D., Roberts, R., Eliassen, J. C., Owens, D. F., Maltby, D., Myers, R. M. & Mayeri, E. (1992). Identification and molecular cloning of a neuropeptide Y homolog that produces prolonged inhibition in Aplysia neurons. Neuron 9, 505–13.CrossRefGoogle ScholarPubMed
Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W., Shaw, C. & Buchanan, K. D. (1990). Immunoreactivity to the pancreatic polypeptide family in the nervous system of the human blood fluke, Schistosoma mansoni. Cell and Tissue Research 261, 573–81.CrossRefGoogle Scholar
Smyth, J. D. & Halton, D. W. (1983). The Physiology of Trematodes. Cambridge: Cambridge University Press.Google Scholar