Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-17T16:09:47.828Z Has data issue: false hasContentIssue false

Contrasting regulation of fecundity in two abomasal nematodes of Svalbard reindeer (Rangifer tarandus platyrhynchus)

Published online by Cambridge University Press:  12 July 2001

R. J. IRVINE
Affiliation:
Centre for Ecology and Hydrology, Hill of Brathens, Banchory AB31 4BY, UK Department of Biological and Molecular Sciences, University of Stirling, Stirling FK9 4LA, Scotland
A. STIEN
Affiliation:
Centre for Ecology and Hydrology, Hill of Brathens, Banchory AB31 4BY, UK
J. F. DALLAS
Affiliation:
NERC Molecular Genetics in Ecology Initiative, Department of Zoology, University of Aberdeen, Tillydrone Avenue Aberdeen, AB24 2TZ, UK
O. HALVORSEN
Affiliation:
Zoological Museum, University of Oslo, Sarsgate 1, N-0562 Oslo, Norway
R. LANGVATN
Affiliation:
University Courses in Svalbard (UNIS) Longyearbyen, N-9170, Norway Norwegian Institute for Nature Research (NINA), Tungasletta-2, N-7485 Trondheim, Norway
S. D. ALBON
Affiliation:
Centre for Ecology and Hydrology, Hill of Brathens, Banchory AB31 4BY, UK

Abstract

Stability of trichostrogylid populations indicates that some form of density-dependent regulation occurs which could act through fecundity. We present evidence for intraspecific density-dependent effects in 1 of 2, dominant, abomasal nematodes species (Ostertagia gruehneri) of Svalbard reindeer (Rangifer tarandus platyrhynchus). We found evidence in O. gruehneri, for density-dependent regulation of female worm length in April, July and October 1999. However, it is only in July that female worm length explains the variation in the number of eggs in utero which is also related to egg production per female worm only in this month and not at other times of the year. The seasonal pattern in faecal egg output in this species focuses egg production in the summer months when conditions are favourable to transmission. In contrast, we found no evidence in the other common species (Marshallagia marshalli) for density-dependent regulation of female worm length during or the number of eggs in utero. Faecal egg output in M. marshalli was positively related to worm burden but not to the mean number of eggs in utero. Neither inter-specific interactions nor host body condition appeared to influence worm fecundity. The contrasting patterns of density-dependent regulation of fecundity provides further evidence for divergent life-histories in this nematode community.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ADAMSON, M. L. & NOBLE, S. J. (1993). Interspecific and intraspecific competition among pinworms in the hindgut of Periplaneta americana. Journal of Parasitology 79, 5056.CrossRefGoogle Scholar
ANDERSON, R. M. & MAY, R. M. (1991). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford, UK.
ANDERSON, R. M. & MAY, R. M. (1978). Regulation and stability of host-parasite population interactions. I. Regulatory processes. Journal of Animal Ecology 47, 219248.Google Scholar
ANDERSON, R. M. & SCHAD, G. A. (1985). Hookworm burdens and faecal egg counts: an analysis of the biological basis of variation. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 812825.CrossRefGoogle Scholar
ANDERSON, R. M. & MICHEL, J. F. (1977). Density dependent survival in populations of Ostertagia ostertagi. International Journal for Parasitology 7, 321329.CrossRefGoogle Scholar
BARGER, I. A. (1985). The statistical distribution of trichostrongylid nematodes in grazing lambs. International Journal for Parasitology 15, 645649.CrossRefGoogle Scholar
BISHOP, S. C. & STEAR, M. J. (2000). The use of a gamma-type function to assess the relationship between the number of adult Teladorsagia circumcincta and total egg output. Parasitology 121, 435440.CrossRefGoogle Scholar
BOAG, B. & THOMAS, R. J. (1977). Epidemiological studies on gastro-intestinal nematode parasites of sheep: the seasonal number of generations and succession of species. Research in Veterinary Science 22, 6277.Google Scholar
CROLL, N. A., ANDERSON, R. M., GYORKOS, T. W. & GHADIRIAN, E. (1982). The population biology and control of Ascaris lumbricoides in a rural community in Iran. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 187197.CrossRefGoogle Scholar
COYNE, M. J. & SMITH, G. (1991). Fecundity of gastrointestinal trichostrongylid nematodes of sheep in the field. American Journal of Veterinary Research 52, 11821188.Google Scholar
DALLAS, J. F., IRVINE, R. J., HALVORSEN, O. & ALBON, S. D. (2000). Identification by polymerase chain reaction (PCR) of Marshallagia marshalli and Ostertagia gruehneri from Svalbard reindeer. International Journal for Parasitology 30, 863866.CrossRefGoogle Scholar
DOBSON, A. P. (1985). The population dynamics of competition between species. Parasitology 91, 317347.CrossRefGoogle Scholar
GULLAND, F. M. D. (1992). The role of nematode parasites in Soay sheep (Ovis aries) mortality during a population crash. Parasitology 105, 493503.CrossRefGoogle Scholar
HALVORSEN, O., STIEN, A., IRVINE, J., LANGVATN, R. & ALBON, S. (1999). Evidence for continued transmission of parasitic nematodes in reindeer during the Arctic winter. International Journal for Parasitology 29, 567579.CrossRefGoogle Scholar
HUDSON, P. J. & DOBSON, A. P. (1995). Macroparasites: observed patterns. In Ecology of Infectious Diseases in Natural Populations (ed. GRENFELL, B. T. & DOBSON, A. P.), pp. 144176. Cambridge University Press, Cambridge.CrossRef
HUDSON, P. J. & DOBSON, A. P. (1997). Transmission dynamics and host parasite interactions of Trichostrongylus tenuis in red grouse (Lagopus lagopus scoticus). Journal of Parasitology 83, 194202.CrossRefGoogle Scholar
IRVINE, R. J., STIEN, A., HALVORSEN, O., LANGVATN, R. & ALBON, S. D. (2000). Life-history strategies and population dynamics of abomasal parasites of Svalbard reindeer (Rangifer tarandus platyrhynchus). Parasitology 120, 297311.CrossRefGoogle Scholar
LANGVATN, R., ALBON, S. D., IRVINE, R. J., HALVORSEN, O. & ROPSTAD, E. (1999). Parasitter, kondisjon og reproduksjon hos svalbardrein. In Svalbardtundraens Økologi (ed. BENGSTRON, S. A. MEHLUM, F. & SEVERINSEN, T.), pp. 139148. Norsk Polarinstitut, Tromsø, Norway.
KEYMER,  A. E. & SLATER, A. F. G. (1987). Helminth fecundity: density dependence or statistical illusion? Parasitology Today 3, 5658.Google Scholar
LEBRETON, J.-D. (1989). Statistical methodology for the study of animal populations. Bulletin of the International Statistical Institute 53, 267282.Google Scholar
MAFF/ADAS. (1986). Manual of Veterinary Parasitological Techniques. Reference Book 418. HMSO, London.Google Scholar
MICHAEL, E. & BUNDY, D. A. P. (1989). Density dependence in establishment, growth and worm fecundity in intestinal helminthiasis: the population biology of Trichuris muris (Nematoda) infection in CBA/Ca mice. Parasitology 98, 451458.CrossRefGoogle Scholar
MICHEL, J. F. (1969). Some observations on the worm burdens of calves infected daily with Ostertagia ostertagi. Parasitology 59, 575595.CrossRefGoogle Scholar
MICHEL, J. F. (1974). Arrested development of nematodes and some related phenomena. In Advances in Parasitology 12, 279344.CrossRefGoogle Scholar
QUINNELL, R. J., MEDLEY, G. F. & KEYMER, A. E. (1990). The regulation of gastrointestinal helminth populations. Philosophical Transactions of the Royal Society of London, B 330, 191201.CrossRefGoogle Scholar
SCOTT, M. E. & LEWIS, J. W. (1987). Population dynamics of helminth parasites in wild and laboratory rodents. Mammal Review 17, 95103.CrossRefGoogle Scholar
SHAW, J. L. & MOSS, R. (1989). The role of parasite fecundity and longevity in the success of Trichostrongylus tenuis in low density red grouse populations. Parasitology 99, 253258.CrossRefGoogle Scholar
SMITH, G. & GRENFELL, B. T. (1985). The population biology of Ostertagia ostertagi. Parasitology Today 1, 7681.CrossRefGoogle Scholar
STEAR, M. J., BISHOP, S. C., DOLIGALSKA, M., DUNCAN, J. L., HOLMES, P. H., IRVINE, J., MCCRIRIE, L., MCKELLAR, Q. A., SINSKI, E. & MURRAY, M. (1995). Regulation of egg production, worm burden, worm length and worm fecundity by host responses in sheep infected with Ostertagia circumcincta. Parasite Immunology 17, 643652.CrossRefGoogle Scholar
STEAR, M. J., PARK, M. & BISHOP, S. C. (1996). The key components of resistance to Ostertagia circumcincta in lambs. Parasitology Today 12, 438441.CrossRefGoogle Scholar
TOMPKINS, D. M. & HUDSON, P. J. (1999). Regulation of nematode fecundity in the ring necked pheasant (Phasianus colchicus): not just density dependence. Parasitology 118, 417423.CrossRefGoogle Scholar
VAN HOUTERT, F. J. & SYKES, A. R. (1996). Implications of nutrition for the ability of ruminants to withstand gastrointestinal nematode infections. International Journal for Parasitology 26, 11511168.CrossRefGoogle Scholar
WILSON, K. & GRENFELL, B. T. (1997). Generalised linear modelling for parasitologists. Parasitology Today 13, 3338.CrossRefGoogle Scholar