Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-06T21:54:28.273Z Has data issue: false hasContentIssue false

The fine-structure of the epimastigote forms of Trypanosoma lewisi in the rectum of the flea, Nosopsyllus fasciatus

Published online by Cambridge University Press:  06 April 2009

David H. Molyneux
Affiliation:
The Molteno Institute, University of Cambridge

Extract

The fine-structure of the epimastigote forms of Trypanosoma lewisi in the rectum of the flea, Nosopsyllus fasciatus is described.

The parasites are attached to the rectal wall by penetration of the flagella between the highly folded wall of the rectum, by the wedging of the expanded flagella in these folds and irregularities of the wall and by a zonula adherens functional complex between the flagellar membrane and the cuticle of the rectum.

The parasites remain associated with each other by their flagella. The daughter axonemes produced during division are retained within the parent flagellar membrane; this delayed division of the flagella results in up to four axonemes being found within a single flagellar membrane. The parasites accumulate together in masses in the lumen of the rectum and their surfaces interdigitate resulting in the mass of parasites being retained together.

The financial assistance of the Agricultural Research Council is gratefully acknowledged. My sincere thanks are due also to my supervisor Dr Tate for his help, encouragement and enthusiasm through the course of this work.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, W. A. & Ellis, R. A. (1965). Ultrastructure of Trypanosoma lewisi: flagellum, microtubules and the kinetoplast. J. Protozool. 12, 483–99.CrossRefGoogle Scholar
Baker, J. R. (1956). Studies on Trypanosoma avium Danilewsky 1885. III. Life-cycle in vertebrate and invertebrate hosts. Parasitology 46, 335–52.CrossRefGoogle ScholarPubMed
Clark, T. B. & Wallace, F. G. (1960). A comparative study of kinetoplast ultrastructure in the Trypanosomatidae. J. Protozool. 7, 115–24.CrossRefGoogle Scholar
Davis, B. S. (1952). Studies on the trypanosomes of some Californian mammals. Univ. Calif. Publs Zool. 57, 145250.Google Scholar
Fauré-Fremiet, E. (1961). Cils fibratiles et flagelles. Biol. Rev. 36, 464536.CrossRefGoogle Scholar
Fawcett, D. W. (1966). An Atlas of Fine Structure. The Cell: Its Organelles and Inclusions. Philadelphia and London: W. B. Saunders.Google Scholar
Garnham, P. C. C. (1966). Locomotion in parasitic Protozoa. Biol. Rev. 41, 561–86.CrossRefGoogle ScholarPubMed
Hoare, C. A. (1923). An experimental study of the sheep trypanosome (T. melophagium Flu. 1908), and its transmission by the sheep-ked (Melophagus ovinus L.). Parasitology 15, 365424.CrossRefGoogle Scholar
Hoare, C. A. (1931). Studies on Trypanosoma grayi. III. Life-cycle in the tse-tse fly and in the crocodile. Parasitology 23, 449–84.CrossRefGoogle Scholar
Horne, R. W. & Newton, B. A. (1958). Intracellular structures in Strigomonas oncopelti. II. Fine-structure of the kinetoplast-blepharoplast complex. Expl Cell Res. 15, 103–11.CrossRefGoogle Scholar
Kusel, J. P., Moore, K. E. & Weber, M. M. (1967). The ultrastructure of Crithidia fasciculata and morphological changes induced by growth in acriflavin. J. Protozool. 14, 283–96.CrossRefGoogle ScholarPubMed
Leeson, H. S. (1932). Methods of rearing and maintaining large stocks of fleas and mosquitoes for experimental purposes. Bull. Ent. Res. 23, 2531.Google Scholar
Mercer, E. H. & Shaffer, B. M. (1960). Electron microscopy of solitary and aggregated slime mold cells. J. biophys. biochem. Cytol. 7, 353–6.CrossRefGoogle Scholar
Milder, R. & Deane, M. P. (1967). Ultrastructure of Trypanosoma conorhini in the crithidial phase. J. Protozool. 14, 6572.CrossRefGoogle Scholar
Minchin, E. A. & Thomson, J. D. (1915). The rat-trypanosome, Trypanosoma lewisi in its relation to the rat-flea, Ceratophyllus fasciatus. Q. Jl microsc. Sci. 60, 463692.Google Scholar
Mühlpfordt, H. (1963 a). Über die Beteutung und Feinstruktur des Blepharoplasten bei parasitischen Flagellaten. I. Teil. Z. Tropenmed. Parasit. 14, 355–98.Google Scholar
Mühlpfordt, H. (1963 b). Über die Beteutung und Feinstruktur des Blepharoplasten bei parasitischen Flagellaten. II. Teil. Z. Tropenmed. Parasit. 14, 475501.Google Scholar
Robertson, M. (1927). Notes on certain points in the cytology of Trypanosoma raiae and Bodo caudatus. Parasitology 19, 375–93.CrossRefGoogle Scholar
Ross, R. & Greenlee, T. K. (1966). Electron microscopy: Attachment sites between connective tissue cells. Science, N.Y. 153, 997–9.CrossRefGoogle ScholarPubMed
Sanabria, A. (1963). Ultrastructure of Trypanosoma cruzi in mouse myocardium. I. Trypanosoma form. Expl Parasit. 14, 8191.CrossRefGoogle ScholarPubMed
Sanabria, A. (1964). Ultrastructure of Trypanosoma cruzi in mouse myocardium. II. Crithidial and leishmanial forms. Expl Parasit. 15, 125–37.CrossRefGoogle Scholar
Sanabria, A. (1966). Ultrastructure of Trypanosoma cruzi in the rectum of Rhodnius prolixus. Expl Parasit. 19, 276–99.CrossRefGoogle ScholarPubMed
Vickerman, K. (1962). The mechanism of cyclical development in trypanosomes of the Trypanosoma brucei sub-group: an hypothesis based on ultrastructural observations. Trans. R. Soc. trop. Med. Hyg. 56, 487–95.CrossRefGoogle ScholarPubMed
Vickerman, K. (1966). Electron microscopy of tsetse salivary gland stages in the life-cycle of Trypanosoma rhodesiense. Trans. R. Soc. trop. Med. Hyg. 60, 8.CrossRefGoogle Scholar
Vickerman, K. & Perry, E. R. (1968). The mode of formation of the tsetse fly peritrophic membrane and its penetration by trypanosomes. Trans. R. Soc. trop. Med. Hyg. 62, 1213.Google Scholar