Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-05T20:32:30.424Z Has data issue: false hasContentIssue false

Immunocytochemical demonstration of a SALMFamide-like neuropeptide in the nervous system of adult and larval stages of the human blood fluke, Schistosoma mansoni

Published online by Cambridge University Press:  06 April 2009

D. J. A. Brownlee
Affiliation:
Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Southampton, Southampton SO16 7PX, England School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 1NN, NorthernIreland
I. Fairweather
Affiliation:
School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 1NN, NorthernIreland
C. F. Johnston
Affiliation:
School of Clinical Medicine, The Queen's University of Belfast, Belfast BT7 1NN, NorthernIreland
M. C. Thorndyke
Affiliation:
Royal Holloway and Bedford New College, University of London, Egham, Surrey TW20 0EX, England
P. J. Skuce
Affiliation:
School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 1NN, NorthernIreland

Summary

The localization and distribution of SALMFamide immunoreactivity (IR), SI(GFNSALMFamide), in the nervous system of both the adult and larval stages of the trematode Schistosoma mansoni has been determined by an indirect immunofluorescent technique in conjunction with confocal scanning laser microscopy (CSLM). Immunostaining was widespread in the nervous system of adult male and female S. mansoni. In the central nervous system (CNS), IR was evident in nerve cells and fibres in the anterior ganglia, cerebral commissure and dorsal and ventral nerve cords. In the peripheral nervous system (PNS), IR was apparent in nerve plexuses associated with the subtegmental musculature, oral and ventral suckers, the lining of the gynaecophoric canal, and in fine nerve fibres innervating the dorsal tubercles of the male worm. In the reproductive system of male and female worms, Sl-IR was only observed around the ootype/Mehlis' gland complex in the female. Immunostaining was also evident in the nervous system of both miracidium and cercarial larval stages. A post-embedding, IgG-conjugated colloidal gold immunostaining technique was employed to examine the subcellular distribution of SALMFamide-IR in the CNS of S. mansoni. Gold labelling of peptide was localized over dense-cored vesicles within nerve cell bodies and fibres constituting the neuropile of the anterior ganglia, cerebral commissure and nerve cords of the CNS. Antigen pre-absorption studies indicated that the results obtained do suggest S1-like immunostaining and not cross-reactivity with other peptides, in particular FMRFamide.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Basch, P. F. & Gupta, B. C. (1988). Immunocytochemical localization of regulatory peptides in six species of trematode parasites. Comparative Biochemistry and Physiology (C) 91, 565–70.Google ScholarPubMed
Bennett, J. & Bueding, E. (1971). Localization of biogenic amines in Schistosoma mansoni. Comparative Biochemistry and Physiology (A) 39, 859–67.CrossRefGoogle ScholarPubMed
Bennett, J., Bueding, E., Timms, A. R. & Engstrom, R. G. (1969). Occurrence and levels of 5-hydroxytryptamine in Schistosoma mansoni. Molecular Pharmacology 5, 542–5.Google ScholarPubMed
Brownlee, D. J. A. (1994). Putative neurotransmitters in selected helminth parasites: Cellular and subcellular localisation. Ph.D. thesis, The Queen's University of Belfast, Northern Ireland.Google Scholar
Brownlee, D. J. A., Fairweather, I. & Johnston, C. F. J. (1994 a). Fasciola hepatica: Cellular and subcellular localisation of peptide immunoreactivities within the nervous system. Brain Research Association Abstracts 11, 77.Google Scholar
Brownlee, D. J. A., Fairweather, I., Johnston, C. F. J. & Thorndyke, M. C. (1994 b). Ascaris suum: Neurochemistry of the enteric and peripheral nervous systems. Brain Research Association Abstracts 11, 60.Google Scholar
Brownlee, D. J. A., Fairweather, I., Johnston, C. F. J. & Brennan, G. P. (1993). Immunocytochemistry and immunogold labelling of neuropeptide immunoreactivities in the nervous system of the nematode, Ascaris suum. Regulatory Peptides 47, 98.Google Scholar
Bruckner, D. A. & Voge, M. (1974). The nervous system of larval Schistosoma mansoni as revealed by acetylcholinesterase staining. Journal of Parasitology 60, 437–46.CrossRefGoogle ScholarPubMed
Chou, T-C. T., Bennett, J. & Bueding, E. (1972). Occurrence and concentrations of biogenic amines in trematodes. Journal of Parasitology 58, 1098–102.CrossRefGoogle ScholarPubMed
Coons, A. H., Leduc, E. H. & Connolly, J. M. (1955). Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. Journal of Experimental Medicine 102, 4960.CrossRefGoogle Scholar
Dei-Cas, E., Dhainaut-Courtois, N. & Biguet, J. (1981). Contribution à l'étude du système nerveux des formes adultes et larvaires de Schistosoma mansoni Sambon, 1907 (Trematoda: Digenea). II. Rôle de la sérotonine et de la dopamine. Annales de Parasitologie Humaine et Comparée 56, 271–84.CrossRefGoogle Scholar
Dei-Cas, E., Dhainaut-Courtois, N., Dhainaut, A. & Vernes, A. (1979). Ultrastructural localization of tritiated 5-HT in adult Schistosoma mansoni. A preliminary report. Biologic Cellulaire 35, 321–4.Google Scholar
Elphick, M. R., Reeve, J. R., Burke, R. D. & Thorndyke, M. C. (1991 a). Isolation of the neuropeptide SALMFamide-1 from starfish using a new antiserum. Peptides 12, 455–9.CrossRefGoogle ScholarPubMed
Elphick, M. R., Price, D. A., Lee, T. D. & Thorndyke, M. C. (1991 b). The SALMFamides: two novel related neuropeptides from an echinoderm. Proceedings of the Royal Society, B243, 121–7.Google ScholarPubMed
Fripp, P. J. (1967). Histochemical localization of esterase activity in schistosomes. Experimental Parasitology 21, 380–90.CrossRefGoogle ScholarPubMed
Gianutsos, G. & Bennett, J. L. (1977). The regional distribution of dopamine and norepinephrine in Schistosoma mansoni and Fasciola hepatica. Comparative Biochemistry and Physiology(C) 58, 157–9.Google ScholarPubMed
Golding, D. w. (1974). A survey of neuroendocrine phenomena in non-arthropod invertebrates. Biological Reviews 49, 161224.CrossRefGoogle ScholarPubMed
Gupta, B. C. & Basch, P. F. (1989). Human chorionic gonadotropin-like immunoreactivity in schistosomes and Fasciola. Parasitology Research 76, 86–9.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S. (1987). Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of Schistosoma mansoni. Parasitology Research 74, 168–74.CrossRefGoogle ScholarPubMed
Johnston, C. F., Shaw, C., Halton, D. W. & Fairweather, I. (1990). Confocal scanning laser microscopy and helminth neuroanatomy. Parasitology Today 6, 305–8.CrossRefGoogle ScholarPubMed
Joffe, B. I. & Reuter, M. (1993). The nervous system of Bothriomolus balticus (Proseriata) - a contribution to the knowledge of the orthogon in the Plathelminthes. Zoomorphology 113, 113–27.CrossRefGoogle Scholar
Keating, C., Thorndyke, M. C., Holden-Dye, L., Franks, C. J., Williams, R. G. & Walker, R. J. (1993). Immunocytochemical detection of SALMFamide like immunoreactivity in the nervous system of the nematode Haemonchus contortus. British Journal of Pharmacology 111, 307.Google Scholar
Machado, C. R. S., Machado, A. B. M. & Pellegrino, J. (1972). Catecholamine-containing neurons in Schistosoma mansoni. Zeitschrift für Zellforschung 124, 230–7.CrossRefGoogle ScholarPubMed
Maule, A. G., Shaw, C., Halton, D. W., Thim, I., Johnston, C. F., Fairweather, I. & Buchanan, K. D. (1991). Neuropeptide F: a novel parasitic flatworm regulatory peptide from Monieza expansa (Cestoda: Cyclophyllidea). Parasitology 102, 309–16.CrossRefGoogle Scholar
Michaels, R. M. (1969). Mating of Schistosoma mansoni in vitro. Experimental Parasitology 25, 5871.CrossRefGoogle ScholarPubMed
Moore, S. J. & Thorndyke, M. C. (1993). Immunocytochemical mapping of the novel echinoderm neuropeptide SALMFamide 1 (S1) in the starfish Asterias rubens. Cell and Tissue Research 274, 605–18.CrossRefGoogle ScholarPubMed
Podesta, R. B. (1982). Membrane biology of helminths. In Membrane Physiology of Invertebrates (ed. Podesta, R. B.) pp. 121–77. New York: Dekker.Google Scholar
Popiel, I. (1986). The reproductive biology of schistosomes. Parasitology Today 2, 1015.CrossRefGoogle ScholarPubMed
Reiter, D. & Wikgren, M. (1991). Immunoreactivity to a specific echinoderm neuropeptide in the nervous system of the flatworm Macrostomum hystricinum marinum (Turbellaria, Macrostomida). Hydrobiologia 227, 229.CrossRefGoogle Scholar
Roth, J. (1982). The protein A-gold (pAg) technique. Qualitative and quantitative approach for antigen localisation on thin sections. In Techniques in Immunocytochemistry, Vol 1, pp. 104–37, London: Academic Press.Google Scholar
Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W., Shaw, C. & Buchanan, K. D. (1990 a). Immunoreactivity to the pancreatic polypeptide family in the nervous system of the adult human blood fluke, Schistosoma mansoni. Cell and Tissue Research 261, 573–81.CrossRefGoogle Scholar
Skuce, P. J., Johnston, C. F., Fairweather, I., Halton, D. W. & Shaw, C. (1990 b). A confocal scanning laser microscope study of the peptidergic and serotoninergic components of the nervous system in larval Schistosoma mansoni. Parasitology 101, 227–34.CrossRefGoogle ScholarPubMed
Solis-Soto, J. M. & De Jong Brink, M. (1994). Immunocytochemical study on biologically active neurosubstances in daughter sporocysts and cercariae of Trichobilharzia ocellata and Schistosoma mansoni. Parasitology 108, 301–11.CrossRefGoogle Scholar
Thorndyke, M. C., Crawford, B. D. & Burke, R. D. (1992). Localisation of a SALMFamide neuropeptide in the larval nervous system of the sand dollar Dendraster excentricus. Acta Zoologica 73, 207–12.CrossRefGoogle Scholar
Wikgren, M. C. & Thorndyke, M. C. (1990). An echinoderm neuropeptide in flatworms ? In The Early Brain, (ed. Gustafsson, M. K. S. & Reuter, M.) pp. 4552. Finland: Abo Academy Press.Google Scholar
Zhou, Y. & Podesta, R. B. (1992). Ring-shaped organization of cytoskeletal F-actin associated with surface sensory receptors of Schistosoma mansoni: a confocal and electron microscopic study. Tissue and Cell 24, 3749.CrossRefGoogle ScholarPubMed