Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-06T20:06:11.231Z Has data issue: false hasContentIssue false

Karyotype plasticity in Neotropical Leishmania: an index for measuring genomic distance among L. (V.) peruviana and L. (V.) braziliensis populations

Published online by Cambridge University Press:  06 April 2009

J. C. Dujardin
Affiliation:
Laboratory of Protozoology, Institute of Tropical Medicine ‘Prince Leopold’, Nationalestraat 155, B-2000 Antwerpen 1, Belgium
J. P. Dujardin
Affiliation:
Génétique Moléculaire des Parasites et des Vecteurs, UMR CNRS/ORSTOM 9926, ORSTOM, BP5045, F-34032 Montpellier Cedex, France
M. Tibayrenc
Affiliation:
Génétique Moléculaire des Parasites et des Vecteurs, UMR CNRS/ORSTOM 9926, ORSTOM, BP5045, F-34032 Montpellier Cedex, France
G. Timperman
Affiliation:
Laboratory of Protozoology, Institute of Tropical Medicine ‘Prince Leopold’, Nationalestraat 155, B-2000 Antwerpen 1, Belgium
S. De Doncker
Affiliation:
Laboratory of Protozoology, Institute of Tropical Medicine ‘Prince Leopold’, Nationalestraat 155, B-2000 Antwerpen 1, Belgium
D. Jacquet
Affiliation:
Laboratory of Protozoology, Institute of Tropical Medicine ‘Prince Leopold’, Nationalestraat 155, B-2000 Antwerpen 1, Belgium
J. Arevalo
Affiliation:
Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, AP 5045 Lima 100, Peru
A. Llanos-Cuentas
Affiliation:
Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, AP 5045 Lima 100, Peru
H. Guerra
Affiliation:
Institute of Tropical Medicine ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, AP 5045 Lima 100, Peru
H. Bermudez
Affiliation:
Centra Universitario de Medicina Tropical, Universidad Mayor de San Simon, Casilla 3119, Cochabamba, Bolivia
R. Hamers
Affiliation:
Institute of Molecular Biology, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 Sint Genesius Rode, Belgium
D. Le Ray
Affiliation:
Laboratory of Protozoology, Institute of Tropical Medicine ‘Prince Leopold’, Nationalestraat 155, B-2000 Antwerpen 1, Belgium

Extract

A method for phenetic analysis of karyotype data has been developed for Leishmania populations. Measurement of size difference between chromosomes recognized by a given DNA probe in different isolates led to the formulation of a Chromosome Size Difference Index (CSDI). The method was applied to phenetic analysis of 4 sets of chromosomes – each set being recognized by a different probe – in 37 L. (Viannia) peruviana isolates sampled along a North–South transect through the Peruvian Andes and, in 11 L. (V.) braziliensis isolates from the Amazonian forest (Peru, Bolivia and Brazil). Karyotype variability was better accounted for by CSDI than by a method based on disjunctive encoding of karyotype data. CSDI evidenced the nature of relationships between L. braziliensis and L. peruviana and it provided a coherent picture of geographical and genomic differentiation among parasite populations. The latter did cluster according to their geographical origin. L. braziliensis was found karyotypically more homogeneous than L. peruviana. Within L. peruviana, Northern populations were closer to L. braziliensis than to Southern L. peruviana populations. The validity of karyotypic populations, or karyodemes, was sustained.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anon. (1990). Lutte contre les leishmanioses: rapport d'un Comité OMS d'experts, Organisation Mondiale de la Santé: Série des rapports techniques, 793.Google Scholar
Arana, M., Evans, D. A., Zolessi, A., Llanos-Cuentas, A. & Arevalo, J. (1990). Biochemical characterization of L. (V.) braziliensis and L. (V.) peruviana by isoenzyme electrophoresis. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 526–9.CrossRefGoogle ScholarPubMed
Bañuls, A. L. (1993). Analyse génétique d'isolats naturels sud-américains de Leishmania montrant de possibles phénomènes de recombinaison. DEA thesis, Université de Montpellier II.Google Scholar
Bastien, P., Blaineau, C., Taminh, M., Rioux, J. A., Roizes, G. & Pagès, M. (1990). Interclonal variations in molecular karyotype in Leishmania infantum imply a ‘mosaic’ strain structure. Molecular and Biochemical Parasitology 40, 5362.CrossRefGoogle ScholarPubMed
Bastien, P., Blaineau, C. & Pagès, . (1992). Leishmania: Sex, Lies and Karyotype. Parasitology Today 8, 174–7.CrossRefGoogle ScholarPubMed
Bernards, A., Michels, P. A. M., Lincke, C. R. & Borst, P. (1983). Growth of chromosomes ends in multiplying trypanosomes. Nature, London 303, 592–7.CrossRefGoogle ScholarPubMed
Birren, B. W., Lai, E., Clark, S. M., Hood, L. & Simon, M. I. (1988). Optimized conditions for pulsed field gel electrophoretic separations of DNA. Nucleic Acids Research 16, 7563–82.CrossRefGoogle ScholarPubMed
Bishop, R. P. & Miles, M. A. (1987). Chromosome size polymorphism in Leishmania donovani. Molecular and Biochemical Parasitology 24, 263–72.CrossRefGoogle ScholarPubMed
Blaineau, C., Bastien, P., Rioux, J. A., Roizes, G. & Pagès, M. (1991). Long-range restriction maps of size-variable homologous chromosomes in Leishmania infantum. Molecular and Biochemical Parasitology 46, 293302.CrossRefGoogle ScholarPubMed
Blaineau, C., Bastien, P. & Pagès, M. (1992). Multiple forms of chromosome I, II and V in a restricted population of Leishmania infantum contrasting with monomorphism in individual strains suggest haploidy or automixy. Molecular and Biochemical Parasitology 50, 197204.CrossRefGoogle ScholarPubMed
Briscoe, D. A., Bernstein, R. L., McKay, G. M. & Williams, K. L. (1987). Genetic diversity in cellular slime molds: allozyme electrophoresis and a monoclonal antibody reveal cryptic species among Dictyostelium discoideum strains. Genetics 117, 213–20.CrossRefGoogle Scholar
Carle, G. F. & Olson, M. V. (1984). Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Research 12, 5647–64.CrossRefGoogle ScholarPubMed
Cruz, A. K., Titus, R. & Beverley, S. M. (1993). Plasticity in chromosome number and testing of essential genes in Leishmania by targeting. Proceedings of the National Academy of Science USA 90, 15991603.CrossRefGoogle ScholarPubMed
Dujardin, J. C., Gajendran, N., Hamers, R., Mathijsen, G., Urjel, R., Recacoechea, M., Villaroel, G., Bermudez, H., Desjeux, P., De Doncker, S. & Le Ray, D. (1987). Leishmaniasis in the Lowlands of Bolivia. VII. Characterization and identification of Bolivian isolates by PFG karyotyping. In Leishmaniasis: The First Centenary (1885–1985). New Strategies for Control, NATO ASI series A, vol. 163 (ed. Hart, D.), pp. 137148. New York: Plenum Press.Google Scholar
Dujardin, J. C., Gajendran, N., Arevalo, J., Llanos-Cuentas, A., Guerra, H., Gomez, J., Arroyo, J., De Doncker, S., Jacquet, D., Hamers, R. & Le Ray, D. (1993 a). Karyotype polymorphism and conserved characters in the Leishmania (Viannia) braziliensis complex explored with chromosome-derived probes. Annales de la Société béige de Médecine Tropicale 73, 101–18.Google ScholarPubMed
Dujardin, J. C., Llanos-Cuentas, A., Caceres, A., Arana, M., Dujardin, J. P., Guerrini, F., Gomez, J., Arroyo, J., De Doncker, S., Jacquet, D., Hamers, R., Guerra, H., Le Ray, D. & Arevalo, J. (1993 b). Molecular karyotype variation of Leishmania (Viannia) peruviana evidences geographical populations in Peru along a North-South cline. Annals of Tropical Medicine and Parasitology 87, 335–7.CrossRefGoogle Scholar
Dujardin, J. C., De Doncker, S., Victoir, K., Le Ray, D., Hamers, R. & Arevalo, J. (1994). Size polymorphism of chromosomes bearing gp63 genes in Leishmania of the braziliensis complex: indication of a rearrangement of the gp63 genes in L. braziliensis and L. peruviana. Annals of Tropical Medicine and Parasitology 88, 445–8.CrossRefGoogle Scholar
Ebert, F. (1987). Isoenzyme studies on Leishmania stocks from Peru by ultrathin-layer isoelectrofocusing. Tropical Medicine and Parasitology 38, 3740.Google ScholarPubMed
Fuerst, P. A. & Ferrel, R. E. (1980). The stepwise mutation model: an experimental evaluation utilizing hemoglobin variants. Genetics 94, 185201.CrossRefGoogle Scholar
Giannini, S. H., Schittini, M., Keithly, J. S., Warburton, P. W., Cantor, C. R. & Van Der Ploeg, L. H. T. (1986). Karyotype analysis of Leishmania species and its use in classification and clinical diagnosis. Science 232, 762–5.CrossRefGoogle ScholarPubMed
Giannini, S. H., Curry, S., Tesh, R. & Van Der Ploeg, L. H. T. (1990). Size-conserved chromosomes and stability of molecular karyotype in cloned stocks of Leishmania major. Molecular and Biochemical Parasitology 39, 922.CrossRefGoogle ScholarPubMed
Gregorius, H. R. (1984). A unique genetic distance. Biometrics Journal 26, 1318.CrossRefGoogle Scholar
Guerra, H. (1988). Distribution of Leishmania in Peru. In Research on Control Strategies for the Leishmaniases IDRC-MR 184e, (ed. Walton, B. C., Wijeyaratne, P. M. and Modabber, F.), pp. 135145. Ottawa: IDRC.Google Scholar
Guerrini, F. (1993). Génétique des populations et phylogénie des Leishmania du Nouveau-Monde. Thèse de doctorat, Université de Montpellier II.Google Scholar
Iovannisci, D. M. & Beverley, S. M. (1989). Structural alterations of chromosome 2 in Leishmania major as evidence for diploidy, including spontaneous amplification of the mini-exon array. Molecular and Biochemical Parasitology 34, 177–88.CrossRefGoogle ScholarPubMed
Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise de Sciences Naturelles 44, 223–70.Google Scholar
Katz, M. (1988). A comparative statistical analysis of genetic distances. I-Estimation of distances and of their variances; distribution of the estimators. Biometrics Journal 30, 571–87.CrossRefGoogle Scholar
Lai, E., Birren, B. W., Hood, S. M., Simon, M. I. & Hood, L. (1989). Pulsed field gel electrophoresis. Biotechniques 7, 3442.Google ScholarPubMed
Lainson, R. & Shaw, J. J. (1987). Evolution, classification and geographical distribution. In The Leishmaniases in Biology and Medicine, vol. 1 (ed. Peters, W. & Killick-Kendrick, R.), pp. 2104. London: Academic Press.Google Scholar
Lamas, G. (1982). A preliminary zoogeographical division of Peru, based on butterfly distributions (Lepidoptera, Papilionoidea). In Biological Diversification in the Tropics (ed. Prance, T. P.), pp. 336357. New York: Columbia University Press.Google Scholar
Le Blancq, S. M., Cibulskis, R. E. & Peters, W. (1986). Leishmania in the Old World: 5. Numerical analysis of isoenzyme data. Transactions of the Royal Society of Tropical Medicine and Hygiene 80, 517–24.CrossRefGoogle ScholarPubMed
Lighthall, G. K. & Giannini, S. H. (1992). The chromosomes of Leishmania. Parasitology Today 8, 192–9.CrossRefGoogle ScholarPubMed
Lopez, M., Montoya, I., Arana, M., Cruzalegui, F., Braga, J., Llanos-Cuentas, A., Romero, G. & Arevalo, J. (1988). The use of nonradioactive DNA probes for the characterization of Leishmania isolates from Peru. American Journal of Tropical Medicine and Hygiene 38, 308–14.CrossRefGoogle ScholarPubMed
Lumbreras, H. & Guerra, H. (1985). Leishmaniasis in Peru. In Leishmaniasis, vol. 1 (ed. Chang, K. P. & Bray, R.), pp. 297311. New York: Elsevier.Google Scholar
Pagés, M., Bastien, P., Veas, F., Rossi, V., Bellis, M., Wincker, P., Rioux, J. A. & Roizès, G. (1989). Chromosome size and number polymorphisms in Leishmania infantum suggest amplification/deletion and possible genetic exchange. Molecular and Biochemical Parasitology 36, 161–8.CrossRefGoogle ScholarPubMed
Reiner, N. E., Lo, R., Llanos-Cuentas, A., Guerra, H., Button, L. & McMaster, W. R. (1989). Genetic heterogeneity in Peruvian Leishmania isolates. American Journal of Tropical Medicine and Hygiene 41, 416–21.CrossRefGoogle ScholarPubMed
Romero, G. G., Arana, M., Lopez, M., Montoya, I., Bohl, R., Campos, M., Arevalo, J. & Llanos, A. (1987). Characterization of Leishmania species from Peru. Transactions of the Royal Society of Tropical Medicine and Hygiene 81, 1424.CrossRefGoogle ScholarPubMed
Scholler, J. K., Reed, S. G & Stuart, K. (1986). Molecular karyotype of species and subspecies of Leishmania. Molecular and Biochemical Parasitology 20, 279–93.CrossRefGoogle ScholarPubMed
Schwartz, D. C., Safran, N., Welsh, J., Haas, R., Goldenberg, M. & Cantor, C. R. (1983). New techniques for purifying large DNAs and studying their properties and packaging. Cold Spring Harbour Symposium in Quantitative Biology 47, 189–95.CrossRefGoogle ScholarPubMed
Serres, E. & Roux, M. (1986). Pratique de la classification automatique. L'exemple des Leishmania. In International Symposium on Taxonomy and Phytogeny of Leishmania (ed. Rioux, J. A.), pp. 2740. Montpellier: IMEE.Google Scholar
Tibayrenc, M. (1993). Clonality in Leishmania. Parasitology Today 9, 58.CrossRefGoogle ScholarPubMed
Wilson, A. C., Sarich, V. M. & Maxson, L. R. (1974). The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein and anatomical evolution. Proceedings of the National Academy of Sciences, USA 71, 3028–30.CrossRefGoogle ScholarPubMed