Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-17T09:36:10.827Z Has data issue: false hasContentIssue false

Leishmania (Viannia) braziliensis-induced chronic granulomatous cutaneous lesions affecting the nasal mucosa in the rhesus monkey (Macaca mulatta) model

Published online by Cambridge University Press:  17 October 2003

A. TEVA
Affiliation:
Department of Immunology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro RJ, CEP 21045-900, Brazil
R. PORROZZI
Affiliation:
Department of Immunology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro RJ, CEP 21045-900, Brazil Department of Ultrastructural and Cell Biology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro RJ, CEP 21045-900, Brazil
E. CUPOLILLO
Affiliation:
Department of Immunology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro RJ, CEP 21045-900, Brazil
C. PIRMEZ
Affiliation:
Department of Biochemistry and Molecular Biology, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro RJ, CEP 21045-900, Brazil
M. P. OLIVEIRA-NETO
Affiliation:
Hospital Evandro Chagas Research Center, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro RJ, CEP 21045-900, Brazil
G. GRIMALDI
Affiliation:
Department of Immunology, FIOCRUZ, Av. Brasil 4365, Rio de Janeiro RJ, CEP 21045-900, Brazil

Abstract

The present studies on infections with Leishmania (Viannia) braziliensis in rhesus macaques were made to characterize the evolution of different parasite strains and the immune responses they elicited in this experimental host. A standardized inoculum of promastigotes was injected intradermally either above the eyelid or on the forearm of each monkey. Sixteen infected monkeys developed longstanding infections which lasted until the end of the observation period (33 months). The time required for lesion development was very variable, not only for the isolates showing molecular differences but also for individual animals in groups infected with the same parasite strain. The inocula produced lesions of variable severity, ranging from localized cutaneous leishmaniasis (CL) with a tendency to spontaneous healing to non-healing disease. One infected animal developed persistent metastatic skin and mucosal lesions. Anti-Leishmania antibodies and parasite-specific T-cell responses were induced by the experimental infections. As the granulomatous inflammatory response found at the lesions in L. (V.) braziliensis-infected M. mulatta was similar to that in patients with CL, this primate model could be useful for studying the pathophysiology and immunoregulatory events associated with disease evolution, as well as for the evaluation of new drugs or candidate vaccines.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AMARAL, V. F., PIRMEZ, C., FERREIRA, A. J. S., FERREIRA, V. & GRIMALDI, Jr, G. (2000). Cell populations in lesions of cutaneous leishmaniasis of Leishmania (L.) amazonensis-infected rhesus macaques, Macaca mulatta. Memórias do Instituto Oswaldo Cruz 95, 209216.Google Scholar
AMARAL, V. F., RANSATTO, V. A. O., CONCEIÇÃO-SILVA, F., MOLINARO, E., FERREIRA, V., COUTINHO, S. G., McMAHON-PRATT, D. & GRIMALDI, Jr, G. (1996). The Asian Rhesus macaques (Macaca mulatta) as an experimental model for study of cutaneous leishmaniasis. Experimental Parasitology 82, 3444.CrossRefGoogle Scholar
AMARAL, V. F., TEVA, A., PORROZZI, R., SILVA, A. J., PEREIRA, M. S. & GRIMALDI, Jr, G. (2001). Leishmania (Leishmania) major-infected rhesus macaques (Macaca mulatta) develop varying levels of resistance against homologous reinfections. Memórias do Instituto Oswaldo Cruz 96, 795804.CrossRefGoogle Scholar
CAMPOS-NETO, A., PORROZZI, R., GREESON, K., COLER, R. N., WEBB, J. R., SEIKY, Y. A., REED, S. G. & GRIMALDI, Jr, G. (2001). Protection against cutaneous leishmaniasis induced by recombinant antigens in murine and nonhuman primate models of the human disease. Infection and Immunity 69, 41034108.CrossRefGoogle Scholar
CARVALHO, E. M., BACELLAR, O., BARRAL, A., BADARÓ, R. & JOHNSON, Jr, W. D. (1989). Antigen specific immunosupression in visceral leishmaniasis is cell mediated. Journal of Clinical Investigation 83, 860864.CrossRefGoogle Scholar
CARVALHO, E. M., BARRAL, A., COSTA, J. M., BITTENCOURT, A. & MARSDEN, P. D. (1994). Clinical and immunopathological aspects of disseminating cutaneous leishmaniasis. Acta Tropica 56, 315325.CrossRefGoogle Scholar
CARVALHO, E. M., JOHNSON, Jr, W. D., BARRETO, E., MARSDEN, P. D., COSTA, J. L. M., REED, S. & ROCHA, H. (1985). Cell mediated immunity in American cutaneous and mucocutaneous leishmaniasis. Journal of Immunology 135, 41444148.Google Scholar
CHANG, K.-P., AKMAN, L. & NIELSEN, J. S. (1999). Leishmania virulence and genetic heterogeneity. Clinics in Dermatology 17, 269273.CrossRefGoogle Scholar
CONCEIÇÃO-SILVA, F., DÓREA, R. C., PIRMEZ, C., SCHUBACH, A. & COUTINHO, S. G. (1990). Quantitative study of Leishmania braziliensis braziliensis reactive T cells in peripheral blood and in the lesions of patients with American mucocutaneous leishmaniasis. Clinical and Experimental Immunology 79, 221226.CrossRefGoogle Scholar
CUBA CUBA, C. A., FERREIRA, V., BAMPI, M., MAGALHÃES, A., MARSDEN, P. D., VEXENAT, A. & DE MELLO, M. T. (1990). Experimental infection with Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the marmoset, Callithrix penicillata (Primates: Callithricidae). Memórias do Instituto Oswaldo Cruz 85, 459467.CrossRefGoogle Scholar
CUPOLILLO, E., GRIMALDI, Jr, G., MOMEN, H. & BEVERLEY, S. M. (1995). Intergenic region typing (IRT): a rapid molecular approach to the characterization and evolution of Leishmania. Molecular and Biochemical Parasitology 73, 145155.CrossRefGoogle Scholar
CUPOLILLO, E., MOMEN, H. & GRIMALDI, Jr, G. (1998). Genetic diversity in natural populations of New World Leishmania. Memórias do Instituto Oswaldo Cruz 93, 663668.CrossRefGoogle Scholar
GICHERU, M. M., OLOBO, J. O., ANJILI, C. O., ORAGO, A. S., MODABBER, F. & SCOTT, P. (2001). Vervet monkeys vaccinated with killed Leishmania major parasites and interleukin-12 develop a type 1 immune response but are not protected against challenge infection. Infection and Immunity 69, 245251.CrossRefGoogle Scholar
GRIMALDI, Jr, G. & TESH, R. B. (1993). Leishmaniasis of the New World: current concepts and implications for future research. Clinical Microbiology Reviews 6, 230250.CrossRefGoogle Scholar
JONES, T. C., JOHNSON, W. D., BARRETO, A. C., LAGO, E., BADARÓ, R., CERF, B., REED, S. G., NETTO, E. M., TADA, M. S., FRANÇA, F., WIESE, K., GOLIGHTLY, L., FIKRIG, F., COSTA, J. L. M., CUBA CUBA, C. & MARSDEN, P. D. (1987). Epidemiology of American cutaneous leishmaniasis due to Leishmania braziliensis braziliensis. Journal of Infectious Diseases 156, 7383.CrossRefGoogle Scholar
KENNEDY, R. C., SHEARER, M. H., HILDEBRAND, W. H. & SIMMONDS, R. S. (1997). Nonhuman primates and their use in immunologically based investigations. The Immunologist 5/5, 150156.Google Scholar
KENNEY, R. T., SACKS, D. L., SYPEK, J. P., VILELA, L., GAM, A. A. & EVANS-DAVIS, K. (1999). Protective immunity using recombinant human IL-12 and alum as adjuvants in a primate model of cutaneous leishmaniasis. Journal of Immunology 163, 44814488.Google Scholar
LAINSON, R. & BRAY, R. S. (1966). Studies on the immunology and serology of leishmaniasis. II. Cross-immunity experiments among different forms of American cutaneous leishmaniasis in monkeys. Transactions of the Royal Society of Tropical Medicine and Hygiene 60, 526532.Google Scholar
LAINSON, R. & SHAW, J. J. (1977). Leishmaniasis in Brazil: XII. Observations on cross-immunity in monkeys and man infected with Leishmania mexicana mexicana, L. m. amazonensis, L. braziliensis braziliensis, L. b. guyanensis and L. b. panamensis. Journal of Tropical Medicine and Hygiene 80, 2935.Google Scholar
LAMMAS, D. A., DE HEER, E., EDGAR, J. D., NOVELLI, V., BEN-SMITH, A., BARETTO, R., DRYSDALE, P., BINCH, J., MACLENNAN, C., KUMARARATNE, D. S., PANCHALINGAM, S., OTTENHOFF, T. H. M., CASANOVA, J.-L. & EMILE, J. F. (2002). Heterogeneity in the granulomatous response to mycobacterial infection in patients with defined genetic mutations in the interleukin 12-dependent interferon-gamma production pathway. International Journal of Experimental Pathology 83, 120.CrossRefGoogle Scholar
LEON, L. L., BARRAL, A., MACHADO, G. M. C. & GRIMALDI, Jr, G. (1992). Antigenic differences among Leishmania amazonensis isolates and their relationships with distinct clinical forms of the disease. Memórias do Instituto Oswaldo Cruz 87, 229234.CrossRefGoogle Scholar
LIMA, H. C., VASCONCELOS, A. W., DAVID, J. R. & LERNER, E. A. (1994). American cutaneous leishmaniasis: in situ characterization of the cellular immune response with time. American Journal of Tropical Medicine and Hygiene 50, 743747.CrossRefGoogle Scholar
LUJAN, R., CHAPMAN, Jr, W. L., HANSON, W. L. & DENNIS, V. A. (1986). Leishmania braziliensis: Development of primary and satellite lesions in the experimentally infected owl monkey, Aotus trivirgatus. Experimental Parasitology 61, 348358.CrossRefGoogle Scholar
MARQUES DA CUNHA, A. (1944). Infecções experimentais na leishmaniose tegumentar Americana. Memórias do Instituto Oswaldo Cruz 41, 263282.CrossRefGoogle Scholar
MARSDEN, P. D. (1985). Clinical presentations of Leishmania braziliensis braziliensis. Parasitology Today 1, 129133.CrossRefGoogle Scholar
MURRAY, H. W. (2001). Tissue granuloma structure-function in experimental visceral leishmaniasis. International Journal of Experimental Pathology 82, 249267.CrossRefGoogle Scholar
MURRAY, H. W., RUBIN, B. Y., CARRIERO, S. & ACOSTA, A. M. (1984). Reversible defect in antigen-induced lymphokine and gamma interferon generation in cutaneous leishmaniasis. Journal of Immunology 133, 22502254.Google Scholar
OLOBO, J. O., REID, G. D., GITHURE, J. I. & ANJILI, C. O. (1992). IFN-gamma and delayed-type hypersensitivity are associated with cutaneous leishmaniasis in vervet monkeys following secondary rechallenge with Leishmania major. Scandinavian Journal of Immunology 36, 4852.CrossRefGoogle Scholar
PIRMEZ, C., COOPER, C., PAES-OLIVEIRA, M., SCHUBACH, A., TORIGIAN, V. K. & MODLIN, R. L. (1990). Immunologic responsiveness in American cutaneous leishmaniasis lesions. Journal of Immunology 145, 31003104.Google Scholar
REED, S. G. & SCOTT, P. (2000). Immunologic mechanisms in Leishmania. In Effects of Microbes on the Immune System (ed. Cunningham, M. W. & Fujinami, R. S. ), pp. 537554. Lippincott Williams & Wilkins, Philadelphia.
SARAIVA, N. G., VALDERRAMA, L., LABRADA, M., HOLGUIN, A. F., NAVAS, C., PALMA, G. & WEIGLE, K. A. (1989). The relationship of Leishmania braziliensis subspecies and immune response to disease expression in New World leishmaniasis. Journal of Infectious Diseases 159, 725735.CrossRefGoogle Scholar
SARAVIA, N. G., WEIGLE, K., SEGURA, I., GIANNINI, S. H., PACHECO, R., LABRADA, L. A. & GONÇALVES, A. (1990). Recurrent lesions in human Leishmania braziliensis infection – reactivation or reinfection? Lancet 336, 398402.Google Scholar
SCHUBACH, A., HADDAD, F., OLIVEIRA-NETO, M. P., DEGRAVE, W., PIRMEZ, C., GRIMALDI, Jr, G. & FERNANDES, O. (1998 a). Detection of Leishmania DNA by polymerase chain reaction in scars of treated human patients. Journal of Infectious Diseases 178, 911914.Google Scholar
SCHUBACH, A., MARZOCHI, M. C. A., CUZZI-MAYA, T., OLIVEIRA, A. V., ARAUJO, M. L., OLIVEIRA, A. L. C., PACHECO, R. S., MOMEN, H., CONCEIÇÃO-SILVA, F., COUTINHO, S. G. & MARZOCHI, K. B. F. (1998 b). Cutaneous scars in American tegumentar leishmaniasis patients: a site of Leishmania (Viannia) braziliensis persistence and viability eleven years after antimonial therapy and clinical cure. American Journal of Tropical Medicine and Hygiene 58, 824827.Google Scholar