Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-09T02:25:25.690Z Has data issue: false hasContentIssue false

MicroRNAs: Potentially important regulators for schistosome development and therapeutic targets against schistosomiasis

Published online by Cambridge University Press:  06 February 2012

GUOFENG CHENG*
Affiliation:
Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China, 200241
YOUXIN JIN
Affiliation:
State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China, 200031; School of Life Sciences, Shanghai University, China, 200444
*
*Corresponding author: E-mail: Cheng_guofeng@yahoo.com

Summary

MicroRNAs (miRNAs) are small, endogenous non-coding RNA molecules that regulate gene expression post-transcriptionally by targeting the 3′ untranslated region (3′ UTR) of messenger RNAs. Since the discovery of the first miRNA in Caenorhabditis elegans, important regulatory roles for miRNAs in many key biological processes including development, cell proliferation, cell differentiation and apoptosis of many organisms have been described. Hundreds of miRNAs have been identified in various multicellular organisms and many are evolutionarily conserved. Schistosomes are multi-cellular eukaryotes with a complex life-cycle that require genes to be expressed and regulated precisely. Recently, miRNAs have been identified in two major schistosome species, Schistosoma japonicum and S. mansoni. These miRNAs are likely to play critical roles in schistosome development and gene regulation. Here, we review recent studies on schistosome miRNAs and discuss the potential roles of miRNAs in schistosome development and gene regulation. We also summarize the current status for targeting miRNAs and the potential of this approach for therapy against schistosomiasis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281297.CrossRefGoogle ScholarPubMed
Benetti, R., Gonzalo, S., Jaco, I., Munoz, P., Gonzalez, S., Schoeftner, S., Murchison, E., Andl, T., Chen, T., Klatt, P., Li, E., Serrano, M., Millar, S., Hannon, G. and Blasco, M. A. (2008). A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nature Structural & Molecular Biology 15, 268279.CrossRefGoogle ScholarPubMed
Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R. H. and Cuppen, E. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 2124.CrossRefGoogle ScholarPubMed
Berezikov, E., Liu, N., Flynt, A. S., Hodges, E., Rooks, M., Hannon, G. J. and Lai, E. C. (2010). Evolutionary flux of canonical microRNAs and mirtrons in Drosophila. Nature Genetics 42, 69; author reply 9–10.CrossRefGoogle ScholarPubMed
Borchert, G. M., Lanier, W. and Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural & Molecular Biology 13, 10971101.CrossRefGoogle ScholarPubMed
Boutla, A., Delidakis, C. and Tabler, M. (2003). Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Research 31, 49734980.CrossRefGoogle ScholarPubMed
Boyle, J. P., Wu, X. J., Shoemaker, C. B. and Yoshino, T. P. (2003). Using RNA interference to manipulate endogenous gene expression in Schistosoma mansoni sporocysts. Molecular and Biochemical Parasitology 128, 205215.CrossRefGoogle ScholarPubMed
Bushati, N. and Cohen, S. M. (2007). microRNA functions. Annual Review of Cell and Developmental Biology 23, 175205.CrossRefGoogle ScholarPubMed
Cai, X., Hagedorn, C. H. and Cullen, B. R. (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 19571966.CrossRefGoogle ScholarPubMed
Cao, X., Pfaff, S. L. and Gage, F. H. (2007). A functional study of miR-124 in the developing neural tube. Genes & Development 21, 531536.CrossRefGoogle ScholarPubMed
Caygill, E. E. and Johnston, L. A. (2008). Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Current Biology 18, 943950.CrossRefGoogle ScholarPubMed
Chen, J., Guo, S. X., Yang, Y. P., Liu, J. M., Lin, J. J., Li, J. K. and Cheng, G. F. (2010 a). Cloning and preliminary analysis of a full-length cDNA encoding Argonaute 3 from Schistosoma japonicum. Chinese Journal Schistosomiasis Control 22, 310315.Google Scholar
Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L. and Wang, D. Z. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics 38, 228233.CrossRefGoogle ScholarPubMed
Chen, J. F., Tao, Y., Li, J., Deng, Z., Yan, Z., Xiao, X. and Wang, D. Z. (2010 c). microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. Journal of Cell Biology 190, 867879.CrossRefGoogle ScholarPubMed
Chen, J., Yang, Y., Guo, S., Peng, J., Liu, Z., Li, J., Lin, J. and Cheng, G. (2010 b). Molecular cloning and expression profiles of Argonaute proteins in Schistosoma japonicum. Parasitology Research 107, 889899.CrossRefGoogle ScholarPubMed
Cheng, G., Fu, Z., Lin, J., Shi, Y., Zhou, Y., Jin, Y. and Cai, Y. (2009). In vitro and in vivo evaluation of small interference RNA-mediated gynaecophoral canal protein silencing in Schistosoma japonicum. Journal of Gene Medicine 11, 412421.CrossRefGoogle ScholarPubMed
Chi, K. N., Eisenhauer, E., Fazli, L., Jones, E. C., Goldenberg, S. L., Powers, J., Tu, D. and Gleave, M. E. (2005). A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2′-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. Journal of the National Cancer Institute 97, 12871296.CrossRefGoogle Scholar
Chiang, H. R., Schoenfeld, L. W., Ruby, J. G., Auyeung, V. C., Spies, N., Baek, D., Johnston, W. K., Russ, C., Luo, S., Babiarz, J. E., Blelloch, R., Schroth, G. P., Nusbaum, C. and Bartel, D. P. (2010). Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes & Development 24, 9921009.CrossRefGoogle ScholarPubMed
Davis, B. N., Hilyard, A. C., Lagna, G. and Hata, A. (2008). SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454, 5661.CrossRefGoogle ScholarPubMed
Dissous, C., Khayath, N., Vicogne, J. and Capron, M. (2006). Growth factor receptors in helminth parasites: signalling and host-parasite relationships. FEBS Letters 580, 29682975.CrossRefGoogle ScholarPubMed
Doenhoff, M. J. and Pica-Mattoccia, L. (2006). Praziquantel for the treatment of schistosomiasis: its use for control in areas with endemic disease and prospects for drug resistance. Expert Review of Anti-Infective Therapy 4, 199210.CrossRefGoogle ScholarPubMed
Ebert, M. S., Neilson, J. R. and Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 4, 721726.CrossRefGoogle ScholarPubMed
Elia, L., Contu, R., Quintavalle, M., Varrone, F., Chimenti, C., Russo, M. A., Cimino, V., De Marinis, L., Frustaci, A., Catalucci, D. and Condorelli, G. (2009). Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120, 23772385.CrossRefGoogle ScholarPubMed
Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., Lindholm, M., Hedtjarn, M., Hansen, H. F., Berger, U., Gullans, S., Kearney, P., Sarnow, P., Straarup, E. M. and Kauppinen, S. (2008). LNA-mediated microRNA silencing in non-human primates. Nature 452, 896899.CrossRefGoogle ScholarPubMed
Esau, C. C. (2008). Inhibition of microRNA with antisense oligonucleotides. Methods 44, 5560.CrossRefGoogle ScholarPubMed
Esau, C., Davis, S., Murray, S. F., Yu, X. X., Pandey, S. K., Pear, M., Watts, L., Booten, S. L., Graham, M., McKay, R., Subramaniam, A., Propp, S., Lollo, B. A., Freier, S., Bennett, C. F., Bhanot, S. and Monia, B. P. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism 3, 8798.CrossRefGoogle ScholarPubMed
Filipowicz, W., Bhattacharyya, S. N. and Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Reviews Genetics 9, 102114.CrossRefGoogle ScholarPubMed
Flynt, A. S. and Lai, E. C. (2008). Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nature Reviews Genetics 9, 831842.CrossRefGoogle ScholarPubMed
Freitas, T. C., Jung, E. and Pearce, E. J. (2007). TGF-beta signaling controls embryo development in the parasitic flatworm Schistosoma mansoni. PLoS Pathogens 3, e52.CrossRefGoogle ScholarPubMed
Fukuda, T., Yamagata, K., Fujiyama, S., Matsumoto, T., Koshida, I., Yoshimura, K., Mihara, M., Naitou, M., Endoh, H., Nakamura, T., Akimoto, C., Yamamoto, Y., Katagiri, T., Foulds, C., Takezawa, S., Kitagawa, H., Takeyama, K., O'Malley, B. W. and Kato, S. (2007). DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nature Cell Biology 9, 604611.CrossRefGoogle Scholar
Gomes, M. S., Cabral, F. J., Jannotti-Passos, L. K., Carvalho, O., Rodrigues, V., Baba, E. H. and Sa, R. G. (2009). Preliminary analysis of miRNA pathway in Schistosoma mansoni. Parasitology International 58, 6168.CrossRefGoogle ScholarPubMed
Goodchild, J. (2004). Oligonucleotide therapeutics: 25 years agrowing. Current Opinion in Molecular Therapeutics 6, 120128.Google ScholarPubMed
Hao, L., Cai, P., Jiang, N., Wang, H. and Chen, Q. (2010). Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum. BMC Genomics 11, 55.CrossRefGoogle ScholarPubMed
He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., Xue, W., Zender, L., Magnus, J., Ridzon, D., Jackson, A. L., Linsley, P. S., Chen, C., Lowe, S. W., Cleary, M. A. and Hannon, G. J. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447, 11301134.CrossRefGoogle ScholarPubMed
Hotez, P. J., Brindley, P. J., Bethony, J. M., King, C. H., Pearce, E. J. and Jacobson, J. (2008). Helminth infections: the great neglected tropical diseases. Journal of Clinical Investigation 118, 13111321.CrossRefGoogle ScholarPubMed
Hu, M., Xia, M., Chen, X., Lin, Z., Xu, Y., Ma, Y. and Su, L. (2010). MicroRNA-141 regulates Smad interacting protein 1 (SIP1) and inhibits migration and invasion of colorectal cancer cells. Digestive Diseases and Sciences 55, 23652372.CrossRefGoogle ScholarPubMed
Hu, W., Yan, Q., Shen, D. K., Liu, F., Zhu, Z. D., Song, H. D., Xu, X. R., Wang, Z. J., Rong, Y. P., Zeng, L. C., Wu, J., Zhang, X., Wang, J. J., Xu, X. N., Wang, S. Y., Fu, G., Zhang, X. L., Wang, Z. Q., Brindley, P. J., McManus, D. P., Xue, C. L., Feng, Z., Chen, Z. and Han, Z. G. (2003). Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nature Genetics 35, 139147.CrossRefGoogle ScholarPubMed
Huang, J., Hao, P., Chen, H., Hu, W., Yan, Q., Liu, F. and Han, Z. G. (2009). Genome-wide identification of Schistosoma japonicum microRNAs using a deep-sequencing approach. PLoS One 4, e8206.CrossRefGoogle ScholarPubMed
Humphreys, D. T., Westman, B. J., Martin, D. I. and Preiss, T. (2005). MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proceedings of the National Academy of Sciences, USA 102, 1696116966.CrossRefGoogle ScholarPubMed
Hutvagner, G., Simard, M. J., Mello, C. C. and Zamore, P. D. (2004). Sequence-specific inhibition of small RNA function. PLoS Biology 2, E98.CrossRefGoogle ScholarPubMed
Hynes, N. E. and MacDonald, G. (2009). ErbB receptors and signaling pathways in cancer. Current Opinion in Cell Biology 21, 177184.CrossRefGoogle ScholarPubMed
Hyun, S., Lee, J. H., Jin, H., Nam, J., Namkoong, B., Lee, G., Chung, J. and Kim, V. N. (2009). Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3 K. Cell 139, 10961108.CrossRefGoogle Scholar
Ibanez-Ventoso, C., Vora, M. and Driscoll, M. (2008). Sequence relationships among C. elegans, D. melanogaster and human microRNAs highlight the extensive conservation of microRNAs in biology. PLoS One 3, e2818.CrossRefGoogle ScholarPubMed
Ismail, M., Botros, S., Metwally, A., William, S., Farghally, A., Tao, L. F., Day, T. A. and Bennett, J. L. (1999). Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers. American Journal of Tropical Medicine and Hygiene 60, 932935.CrossRefGoogle ScholarPubMed
Jiang, L., Liu, X., Chen, Z., Jin, Y., Heidbreder, C. E., Kolokythas, A., Wang, A., Dai, Y. and Zhou, X. (2010). MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochemical Journal 432, 199205.CrossRefGoogle ScholarPubMed
Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., Labourier, E., Reinert, K. L., Brown, D. and Slack, F. J. (2005). RAS is regulated by the let-7 microRNA family. Cell 120, 635647.CrossRefGoogle ScholarPubMed
Junn, E., Lee, K. W., Jeong, B. S., Chan, T. W., Im, J. Y. and Mouradian, M. M. (2009). Repression of alpha-synuclein expression and toxicity by microRNA-7. Proceedings of the National Academy of Sciences, USA 106, 1305213057.CrossRefGoogle ScholarPubMed
Kapsimali, M., Kloosterman, W. P., de Bruijn, E., Rosa, F., Plasterk, R. H. and Wilson, S. W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biology 8, R173.CrossRefGoogle ScholarPubMed
Karres, J. S., Hilgers, V., Carrera, I., Treisman, J. and Cohen, S. M. (2007). The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell 131, 136145.CrossRefGoogle ScholarPubMed
Kefas, B., Godlewski, J., Comeau, L., Li, Y., Abounader, R., Hawkinson, M., Lee, J., Fine, H., Chiocca, E. A., Lawler, S. and Purow, B. (2008). microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Research 68, 35663572.CrossRefGoogle ScholarPubMed
Kennell, J. A., Gerin, I., MacDougald, O. A. and Cadigan, K. M. (2008). The microRNA miR-8 is a conserved negative regulator of Wnt signaling. Proceedings of the National Academy of Sciences, USA 105, 1541715422.CrossRefGoogle ScholarPubMed
Khayath, N., Vicogne, J., Ahier, A., BenYounes, A., Konrad, C., Trolet, J., Viscogliosi, E., Brehm, K. and Dissous, C. (2007). Diversification of the insulin receptor family in the helminth parasite Schistosoma mansoni. FEBS Journal 274, 659676.CrossRefGoogle ScholarPubMed
Kim, D. H., Saetrom, P., Snove, O. Jr. and Rossi, J. J. (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proceedings of the National Academy of Sciences, USA 105, 1623016235.CrossRefGoogle ScholarPubMed
Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology 6, 376385.CrossRefGoogle ScholarPubMed
Kloosterman, W. P., Lagendijk, A. K., Ketting, R. F., Moulton, J. D. and Plasterk, R. H. (2007). Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biology 5, e203.CrossRefGoogle ScholarPubMed
Krichevsky, A. M., Sonntag, K. C., Isacson, O. and Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24, 857864.CrossRefGoogle ScholarPubMed
Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M. and Stoffel, M. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685689.CrossRefGoogle ScholarPubMed
Kwon, C., Han, Z., Olson, E. N. and Srivastava, D. (2005). MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proceedings of the National Academy of Sciences, USA 102, 1898618991.CrossRefGoogle ScholarPubMed
La Rocca, G., Badin, M., Shi, B., Xu, S. Q., Deangelis, T., Sepp-Lorenzinoi, L. and Baserga, R. (2009). Mechanism of growth inhibition by MicroRNA 145: the role of the IGF-I receptor signaling pathway. Journal of Cellular Physiology 220, 485491.CrossRefGoogle ScholarPubMed
Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W. and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology 12, 735739.CrossRefGoogle ScholarPubMed
Lee, R. C. and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862864.CrossRefGoogle ScholarPubMed
Lee, R. C., Feinbaum, R. L. and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843854.CrossRefGoogle Scholar
Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S. and Kim, V. N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415419.CrossRefGoogle ScholarPubMed
Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H. and Kim, V. N. (2004). MicroRNA genes are transcribed by RNA polymerase II. The EMBO Journal 23, 40514060.CrossRefGoogle ScholarPubMed
Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 1520.CrossRefGoogle ScholarPubMed
Li, K. K., Pang, J. C., Ching, A. K., Wong, C. K., Kong, X., Wang, Y., Zhou, L., Chen, Z. and Ng, H. K. (2009). miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Human Pathology 40, 12341243.CrossRefGoogle ScholarPubMed
Li, Q., Song, X. W., Zou, J., Wang, G. K., Kremneva, E., Li, X. Q., Zhu, N., Sun, T., Lappalainen, P., Yuan, W. J., Qin, Y. W. and Jing, Q. (2010). Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. Journal of Cell Science 123, 24442452.CrossRefGoogle ScholarPubMed
Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S. and Johnson, J. M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769773.CrossRefGoogle ScholarPubMed
Liu, K., Liu, Y., Mo, W., Qiu, R., Wang, X., Wu, J. Y. and He, R. (2010). MiR-124 regulates early neurogenesis in the optic vesicle and forebrain, targeting NeuroD1. Nucleic Acids Research 39, 28692879.CrossRefGoogle ScholarPubMed
Loverde, P. T., Osman, A. and Hinck, A. (2007). Schistosoma mansoni: TGF-beta signaling pathways. Experimental Parasitology 117, 304317.CrossRefGoogle ScholarPubMed
Makeyev, E. V., Zhang, J., Carrasco, M. A. and Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell 27, 435448.CrossRefGoogle ScholarPubMed
Meyers, B. C., Axtell, M. J., Bartel, B., Bartel, D. P., Baulcombe, D., Bowman, J. L., Cao, X., Carrington, J. C., Chen, X., Green, P. J., Griffiths-Jones, S., Jacobsen, S. E., Mallory, A. C., Martienssen, R. A., Poethig, R. S., Qi, Y., Vaucheret, H., Voinnet, O., Watanabe, Y., Weigel, D. and Zhu, J. K. (2008). Criteria for annotation of plant MicroRNAs. The Plant Cell 20, 31863190.CrossRefGoogle ScholarPubMed
Moretti, F., Thermann, R. and Hentze, M. W. (2010). Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame. RNA 16, 24932502.CrossRefGoogle ScholarPubMed
Nelson, P. T., Baldwin, D. A., Kloosterman, W. P., Kauppinen, S., Plasterk, R. H. and Mourelatos, Z. (2006). RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12, 187191.CrossRefGoogle ScholarPubMed
Nohata, N., Sone, Y., Hanazawa, T., Fuse, M., Kikkawa, N., Yoshino, H., Chiyomaru, T., Kawakami, K., Enokida, H., Nakagawa, M., Shozu, M., Okamoto, Y. and Seki, N. (2011). miR-1 as a tumor suppressive microRNA targeting TAGLN2 in head and neck squamous cell carcinoma. Oncotarget 2, 2942.CrossRefGoogle ScholarPubMed
Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. and Lai, E. C. (2007). The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89100.CrossRefGoogle ScholarPubMed
Osman, A., Niles, E. G., Verjovski-Almeida, S. and LoVerde, P. T. (2006). Schistosoma mansoni TGF-beta receptor II: role in host ligand-induced regulation of a schistosome target gene. PLoS Pathogens 2, e54.CrossRefGoogle ScholarPubMed
Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., Hayward, D. C., Ball, E. E., Degnan, B., Muller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E. and Ruvkun, G. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 8689.CrossRefGoogle ScholarPubMed
Pereira, T. C., Pascoal, V. D., Marchesini, R. B., Maia, I. G., Magalhaes, L. A., Zanotti-Magalhaes, E. M. and Lopes-Cendes, I. (2008). Schistosoma mansoni: evaluation of an RNAi-based treatment targeting HGPRTase gene. Experimental Parasitology 118, 619623.CrossRefGoogle ScholarPubMed
Pierson, J., Hostager, B., Fan, R. and Vibhakar, R. (2008). Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. Journal of Neuro-Oncology 90, 17.CrossRefGoogle ScholarPubMed
Poy, M. N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P. E., Pfeffer, S., Tuschl, T., Rajewsky, N., Rorsman, P. and Stoffel, M. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226230.CrossRefGoogle ScholarPubMed
Qin, W., Shi, Y., Zhao, B., Yao, C., Jin, L., Ma, J. and Jin, Y. (2010). miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One 5, e9429.CrossRefGoogle ScholarPubMed
Reddy, S. D., Ohshiro, K., Rayala, S. K. and Kumar, R. (2008). MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Research 68, 81958200.CrossRefGoogle ScholarPubMed
Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R. and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901906.CrossRefGoogle ScholarPubMed
Ruby, J. G., Jan, C. H. and Bartel, D. P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature 448, 8386.CrossRefGoogle ScholarPubMed
Savioli, L., Stansfield, S., Bundy, D. A., Mitchell, A., Bhatia, R., Engels, D., Montresor, A., Neira, M. and Shein, A. M. (2002). Schistosomiasis and soil-transmitted helminth infections: forging control efforts. Transactions of the Royal Society of Tropical Medicine and Hygiene 96, 577579.CrossRefGoogle ScholarPubMed
Scherr, M., Venturini, L., Battmer, K., Schaller-Schoenitz, M., Schaefer, D., Dallmann, I., Ganser, A. and Eder, M. (2007). Lentivirus-mediated antagomir expression for specific inhibition of miRNA function. Nucleic Acids Research 35, e149.CrossRefGoogle ScholarPubMed
Shoemaker, C. B., Ramachandran, H., Landa, A., dos Reis, M. G. and Stein, L. D. (1992). Alternative splicing of the Schistosoma mansoni gene encoding a homologue of epidermal growth factor receptor. Molecular and Biochemical Parasitology 53, 1732.CrossRefGoogle ScholarPubMed
Simoes, M. C., Lee, J., Djikeng, A., Cerqueira, G. C., Zerlotini, A., da Silva-Pereira, R. A., Dalby, A. R., LoVerde, P., El-Sayed, N. M. and Oliveira, G. (2011). Identification of Schistosoma mansoni microRNAs. BMC Genomics 12, 47.CrossRefGoogle ScholarPubMed
Simon, D. J., Madison, J. M., Conery, A. L., Thompson-Peer, K. L., Soskis, M., Ruvkun, G. B., Kaplan, J. M. and Kim, J. K. (2008). The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell 133, 903915.CrossRefGoogle ScholarPubMed
Taguchi, A. and White, M. F. (2008). Insulin-like signaling, nutrient homeostasis, and life span. Annual Review of Physiology 70, 191212.CrossRefGoogle ScholarPubMed
Takane, K., Fujishima, K., Watanabe, Y., Sato, A., Saito, N., Tomita, M. and Kanai, A. (2010). Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals. BMC Genomics 11, 101.CrossRefGoogle ScholarPubMed
Trabucchi, M., Briata, P., Garcia-Mayoral, M., Haase, A. D., Filipowicz, W., Ramos, A., Gherzi, R. and Rosenfeld, M. G. (2009). The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459, 10101014.CrossRefGoogle ScholarPubMed
Vallejo, D. M., Caparros, E. and Dominguez, M. (2011). Targeting Notch signalling by the conserved miR-8/200 microRNA family in development and cancer cells. EMBO Journal 30, 756769.CrossRefGoogle ScholarPubMed
Vicogne, J., Cailliau, K., Tulasne, D., Browaeys, E., Yan, Y. T., Fafeur, V., Vilain, J. P., Legrand, D., Trolet, J. and Dissous, C. (2004). Conservation of epidermal growth factor receptor function in the human parasitic helminth Schistosoma mansoni. Journal of Biological Chemistry 279, 3740737414.CrossRefGoogle ScholarPubMed
Visvanathan, J., Lee, S., Lee, B., Lee, J. W. and Lee, S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes & Development 21, 744749.CrossRefGoogle ScholarPubMed
Viswanathan, S. R., Daley, G. Q. and Gregory, R. I. (2008). Selective blockade of microRNA processing by Lin28. Science 320, 97100.CrossRefGoogle ScholarPubMed
Wang, Z., Xue, X., Sun, J., Luo, R., Xu, X., Jiang, Y., Zhang, Q. and Pan, W. (2010). An “in-depth” description of the small non-coding RNA population of Schistosoma japonicum schistosomulum. PLoS Neglected Tropical Diseases 4, e596.CrossRefGoogle ScholarPubMed
Webster, R. J., Giles, K. M., Price, K. J., Zhang, P. M., Mattick, J. S. and Leedman, P. J. (2009). Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. Journal of Biological Chemistry 284, 57315741.CrossRefGoogle ScholarPubMed
Woods, K., Thomson, J. M. and Hammond, S. M. (2007). Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. Journal of Biological Chemistry 282, 21302134.CrossRefGoogle ScholarPubMed
Wurdinger, T. and Costa, F. F. (2007). Molecular therapy in the microRNA era. Pharmacogenomics Journal 7, 297304.CrossRefGoogle ScholarPubMed
Xie, C., Huang, H., Sun, X., Guo, Y., Hamblin, M., Ritchie, R. P., Garcia-Barrio, M. T., Zhang, J. and Chen, Y. E. (2011). MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells and Development 20, 205210.CrossRefGoogle ScholarPubMed
Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., Xiao, J., Shan, H., Wang, Z. and Yang, B. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of Cell Science 120, 30453052.CrossRefGoogle ScholarPubMed
Xue, X., Sun, J., Zhang, Q., Wang, Z., Huang, Y. and Pan, W. (2008). Identification and characterization of novel microRNAs from Schistosoma japonicum. PLoS One 3, e4034.CrossRefGoogle ScholarPubMed
Yan, D., Dong Xda, E., Chen, X., Wang, L., Lu, C., Wang, J., Qu, J. and Tu, L. (2009). MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. Journal of Biological Chemistry 284, 2959629604.CrossRefGoogle ScholarPubMed
Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., Chen, G. and Wang, Z. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Medicine 13, 486491.CrossRefGoogle ScholarPubMed
Yang, Y. P., Guo, S. X., Chen, J., Lin, J. J., Liu, Z. P. and Cheng, G. F. (2010). Cloning, expressing and identifying of a full-length cDNA encoding Argonaute from Schistosoma japonicum. Chinese Journal of Zoonoses 26, 830835.Google Scholar
Yao, G., Yin, M., Lian, J., Tian, H., Liu, L., Li, X. and Sun, F. (2010). MicroRNA-224 is involved in transforming growth factor-beta-mediated mouse granulosa cell proliferation and granulosa cell function by targeting Smad4. Molecular Endocrinology 24, 540551.CrossRefGoogle ScholarPubMed
Yoshino, H., Chiyomaru, T., Enokida, H., Kawakami, K., Tatarano, S., Nishiyama, K., Nohata, N., Seki, N. and Nakagawa, M. (2011). The tumour-suppressive function of miR-1 and miR-133a targeting TAGLN2 in bladder cancer. British Journal of Cancer 104, 808818.CrossRefGoogle ScholarPubMed
You, H., Gobert, G. N., Jones, M. K., Zhang, W. and McManus, D. P. (2011). Signalling pathways and the host-parasite relationship: putative targets for control interventions against schistosomiasis: signalling pathways and future anti-schistosome therapies. Bioessays 33, 203214.CrossRefGoogle ScholarPubMed
You, H., Zhang, W., Jones, M. K., Gobert, G. N., Mulvenna, J., Rees, G., Spanevello, M., Blair, D., Duke, M., Brehm, K. and McManus, D. P. (2010). Cloning and characterisation of Schistosoma japonicum insulin receptors. PLoS One 5, e9868.CrossRefGoogle ScholarPubMed
Yuan, B., Dong, R., Shi, D., Zhou, Y., Zhao, Y., Miao, M. and Jiao, B. (2011). Down-regulation of miR-23b may contribute to activation of the TGF-beta1/Smad3 signalling pathway during the termination stage of liver regeneration. FEBS Letters 585, 927934.CrossRefGoogle ScholarPubMed
Zhao, Z. R., Lei, L., Liu, M., Zhu, S. C., Ren, C. P., Wang, X. N. and Shen, J. J. (2008). Schistosoma japonicum: inhibition of Mago nashi gene expression by shRNA-mediated RNA interference. Experimental Parasitology 119, 379384.CrossRefGoogle ScholarPubMed
Zhou, Y., Zheng, H., Chen, Y., Zhang, L., Wang, K., Guo, J., Huang, Z., Zhang, B., Huang, W., Jin, K., Dou, T., Hasegawa, M., Wang, L., Zhang, Y., Zhou, J., Tao, L., Cao, Z., Li, Y., Vinar, T., Brejova, B., Brown, D., Li, M., Miller, D. J., Blair, D., Zhong, Y., Chen, Z., Liu, F., Hu, W., Wang, Z. Q., Zhang, Q. H., Song, H. D., Chen, S., Xu, X., Xu, B., Ju, C., Huang, Y., Brindley, P. J., McManus, D. P., Feng, Z., Han, Z. G., Lu, G., Ren, S., Wang, Y., Gu, W., Kang, H., Chen, J., Chen, X., Chen, S., Wang, L., Yan, J., Wang, B., Lv, X., Jin, L., Wang, B., Pu, S., Zhang, X., Zhang, W., Hu, Q., Zhu, G., Wang, J., Yu, J., Wang, J., Yang, H., Ning, Z., Beriman, M., Wei, C. L., Ruan, Y., Zhao, G., Wang, S., Liu, F., Zhou, Y., Wang, Z. Q., Lu, G., Zheng, H., Brindley, P. J., McManus, D. P., Blair, D., Zhang, Q. H., Zhong, Y., Wang, S., Han, Z. G., Chen, Z., Wang, S., Han, Z. G. and Chen, Z. (2009). The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460, 345351.Google Scholar