Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-02T10:33:19.864Z Has data issue: false hasContentIssue false

Microscopical observations on immune precipitates formed in vitro on the surface of hymenolepid tapeworms

Published online by Cambridge University Press:  06 April 2009

D. Hoole
Affiliation:
Parasitology Research Group, Centre for Applied Entomology and Parasitology, Department of Biological Sciences, Keele University, Keele, Staffs ST5 5BG, UK
J. Andreassen
Affiliation:
Parasitology Laboratory, Department of Population Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
D. Birklund
Affiliation:
Parasitology Laboratory, Department of Population Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark

Summary

Four-day-old worms of the tapeworms Hymenolepis microstoma, H. diminuta and H. nana and newly excysted H. microstoma were exposed in vitro at 37 °C to immune serum from mice infected for 4–1 2 weeks with H. microstoma. Worms were fixed for electron microscopy after intervals of 5 min to 96 h. Within 10–15 min an homogeneous precipitate occurred between the microtriches of 4-day-old H. microstoma and H. nana, while on some areas of H. microstoma the precipitate extended distal to the microthrix border and contained small vesicles (30 nm in diameter) and shed microtriches. In H. diminuta precipitates were not found until 2 h post-incubation. The thickness of the precipitate and the number of small vesicles and shed microtriches increased with time after incubation. Since a similar precipitate occurred on worms kept in complement-depleted immune serum, antibodies alone may induce immune damage. The precipitate on newly excysted H. microstoma lacked microthrix fragments. After 48 h an extensive precipitate was found protruding from the rostellar glands on some H. microstoma, and within the culture vessel. Antibodies may therefore be complexing with tapeworm secretory products.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreassen, J. (1991). Immunity to adult cestodes: basic knowledge and vaccination problems. A review. Parassitologia 33, 4553.Google ScholarPubMed
Andreassen, J. & Birklund, D. (1993). In vitro effects of immune serum on three species of Hymenolepis tapeworm. Bulletin of the Scandinavian Society for Parasitology 3, 2634.Google Scholar
Andreassen, J. & Hoole, D. (1989). Repair of Hymenolepis diminuta after complement-mediated damage. Parasitology 99, 437–43.CrossRefGoogle ScholarPubMed
Bøgh, H. O., Christensen, J. P. B. & Andreassen, J. (1986). Complement-mediated lysis in vitro of newly excysted tapeworms: Hymenolepis diminuta, Hymenolepis microstoma, Hymenolepis nana and Hymenolepis citelli. International Journal for Parasitology 16, 157–61.CrossRefGoogle ScholarPubMed
Befus, A. D. (1977). Hymenolepis diminuta and H. microstoma: Mouse immunoglobulin binding to the tegumental surface. Experimental Parasitotogy 41, 242–51.CrossRefGoogle Scholar
Christensen, J. P. B., Bøgh, H. O. & Andreassen, J. (1986). Hymenolepis diminuta: the effect of serum on different ages of worms in vitro. International Journal for Parasitology 16, 447–53.CrossRefGoogle ScholarPubMed
Harris, W. G. & Turton, J. A. (1973). Antibody response to tapeworm (Hymenolepis diminuta) in the rat. Nature, London 246, 521–2.CrossRefGoogle ScholarPubMed
Ito, A., Honey, R. D., Scanlon, T., Lightowlers, M. W. & Rickard, M. D. (1988). Analysis of antibody responses to Hymenolepis nana infection in mice by the enzyme-linked immunosorbent assay and immunoprecipitation. Parasite Immunology 10, 265–77.CrossRefGoogle ScholarPubMed
Kowalski, J. C. & Thorsen, R. E. (1972). Protective immunity against tetrathyridia of Mesocestoides corti by passive transfer of serum in mice. Journal of Parasitology 58, 244–6.CrossRefGoogle ScholarPubMed
Mueller, J. F. (1961). The laboratory propagation of Spirometra mansonoides as an experimental tool. V. Behaviour of the sparganum in and out of the mouse host, and formation of immune precipitates. Journal of Parasitology 47, 879–83.CrossRefGoogle ScholarPubMed
Murray, P. D., Foster, W. B. & Passmore, H. (1984). Hymenolepis microstoma: mouse strain differences in resistance to a challenge infection. Experimental Parasitology 58, 325–32.CrossRefGoogle ScholarPubMed
Richards, K. S. & Arme, C. (1984). Maturation of the scolex syncytium in the metacestode of Hymenolepis diminuta, with reference to microthrix formation. Parasitology 88, 341–9.CrossRefGoogle Scholar
Robinson, R. D., Andreassen, J. & Arme, C. (1987). Hymenolepis diminuta: ultrastructural observations on complement-mediated tegumental lysis and destrobilation of 4-day-old worms in vitro. International Journal for Parasitology 17, 1225–32.CrossRefGoogle ScholarPubMed
Threadgold, L. T. & Befus, A. D. (1977). Hymenolepis diminuta: Ultrastructural localization of immunoglobulin-binding sites on the tegument. Experimental Parasitology 43, 169–79.CrossRefGoogle ScholarPubMed
Threadgold, L. T. & Robinson, A. (1984). Amplification of the cestode surface: a stereological analysis. Parasitology 89, 523–35.CrossRefGoogle Scholar
Van Der Vorst, E., Dhont, H., Van Haeren, C., Deceunynck, R. & De Rycke, P. H. (1989). Hymenolepis murissylvatici: humoral response in intestinal lavages of the mouse. Journal of Helminthology 63, 2531.CrossRefGoogle ScholarPubMed