Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-17T11:27:37.078Z Has data issue: false hasContentIssue false

Molecular characterization of the kinetoplastid membrane protein-11 genes from the parasite Trypanosoma rangeli

Published online by Cambridge University Press:  03 February 2005

H. DIEZ
Affiliation:
Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Pontificia Universidad Javeriana, Carrera 7a No 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia
M. C. THOMAS
Affiliation:
Instituto de Parasitología y Biomedicina López Neyra, CSIC, Avda. del Conocimiento, s/n, Parque Tecnológico de Ciencias de la Salud, 18100-Granada, Spain
C. P. URUEÑA
Affiliation:
Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Pontificia Universidad Javeriana, Carrera 7a No 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia
S. P. SANTANDER
Affiliation:
Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Pontificia Universidad Javeriana, Carrera 7a No 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia
C. L. CUERVO
Affiliation:
Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Pontificia Universidad Javeriana, Carrera 7a No 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia
M. C. LÓPEZ
Affiliation:
Instituto de Parasitología y Biomedicina López Neyra, CSIC, Avda. del Conocimiento, s/n, Parque Tecnológico de Ciencias de la Salud, 18100-Granada, Spain
C. J. PUERTA
Affiliation:
Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Pontificia Universidad Javeriana, Carrera 7a No 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia

Abstract

Trypanosomatids are early divergent parasites which include several species of medical interest. Trypanosoma rangeli is not pathogenic for humans but shows a high immunological cross-reactivity with Trypanosoma cruzi, the causative agent of Chagas' disease that affects more than 17 million people throughout the world. Recent studies have suggested that T. cruzi KMP-11 antigen could be a good candidate for the induction of immunoprotective cytotoxic responses against T. cruzi natural infection. In the present paper the genes coding for the T. rangeli kinetoplastid membrane protein-11 have been characterized. The results show that the locus encoding this protein is formed by 4 gene units measuring 550 nucleotides in length, organized in tandem, and located in different chromosomes in KP1(+) and KP1(−) strains. The gene units are transcribed as a single mRNA of 530 nucleotides in length. Alignment of the T. rangeli KMP-11 deduced amino acid sequence with the homologous KMP-11 protein from T. cruzi revealed an identity of 97%. Interestingly, the T and B cell epitopes of the T. cruzi KMP-11 protein are conserved in the T. rangeli KMP-11 amino acid sequence.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ACOSTA, L., ROMANHA, A. J., COSENZA, H. & KRETTLI, A. U. ( 1991). Trypanosomatid isolates from Honduras: differentiation between Trypanosoma cruzi and Trypanosoma rangeli. American Journal of Tropical Medicine and Hygiene 44, 676683.CrossRefGoogle Scholar
AFCHAIN, D., LE RAY, D., FRUIT, J. & CAPRON, A. ( 1979). Antigenic make-up of Trypanosoma cruzi culture forms: identification of a specific component. Journal of Parasitology 65, 507514.CrossRefGoogle Scholar
BASSO, B., CERVETTA, L., MORETTI, E., CARLIER, Y. & TRUYENS, C. ( 2004). Acute Trypanosoma cruzi infection: IL-12, IL-18, TNF, sTNFR and NO in T. rangeli-vaccinated mice. Vaccine 22, 18681872.Google Scholar
BASSO, B., MORETTI, E. R. & VOTTERO-CIMA, E. ( 1991). Immune response and Trypanosoma cruzi infection in Trypanosoma rangeli-immunized mice. American Journal of Tropical Medicine and Hygiene 44, 413419.CrossRefGoogle Scholar
BERBERICH, C., RAMÍREZ-PINEDA, J. R., HAMBRECHT, C., ALBER, G., SKEIKY, Y. A. & MOLL, H. ( 2003). Dendritic cell (DC)-based protection against an intracellular pathogen is dependent upon DC-derived IL-12 and can be induced by molecularly defined antigen. Journal of Immunology 170, 31713179.CrossRefGoogle Scholar
BERBERICH, C., MACHADO, G., MORALES, G., CARRILLO, G., JIMÉNEZ-RUIZ, A. & ALONSO, C. ( 1998). The expression of the Leishmania infantum KMP-11 protein is developmentally regulated and stage specific. Biochimica et Biophysica Acta 1442, 230237.CrossRefGoogle Scholar
BERBERICH, C., REQUENA, J. M. & ALONSO, C. ( 1997). Cloning of genes and expression and antigenicity analysis of the Leishmania infantum KMP-11 protein. Experimental Parasitology 85, 105108.CrossRefGoogle Scholar
BRIDGE, M. A., ZHOU, Q., KOOP, B. F. & PEARSON, T. W. ( 1998). Cloning and characterization of the kinetoplastid membrane protein-11 gene locus of Trypanosoma brucei. Molecular and Biochemical Parasitology 91, 359363.CrossRefGoogle Scholar
CLARK, C. G., LAI, E. Y., FULTON, C. & CROSS, G. A. ( 1990). Electrophoretic karyotype and linkage groups of the amoeboflagellate Naegleria gruberi. Journal of Protozoology 37, 400408.CrossRefGoogle Scholar
CORPET, F. ( 1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research 16, 1088110890.CrossRefGoogle Scholar
D'ALESSANDRO, A. ( 1976). Biology of Trypanosoma (Herpetosoma) rangeli Tejera, 1920. In Biology of Kinetoplastida (ed. Lumsden, W. H. R. & Evans, D. A.), pp. 328403. Academic Press, London, New York, and San Francisco.
D'ALESSANDRO, A. & SARAVIA, N. ( 1992). Trypanosoma rangeli. In Parasitic Protozoa (ed. Kreier, J. P. & Baker, J. P.), pp. 154. Academic Press, London, New York, and San Francisco.
D'ALESSANDRO, A. & SARAVIA, N. ( 1999). Trypanosoma rangeli. In Protozoal Diseases (ed. Gilles, H. M.), pp. 398412. Oxford University Press Inc., New York, USA.
De CARVALHO, L. P., SOTO, M., JERÓNIMO, S., DONDJI, B., BACELLAR, O., LUZ, V., ORGE, O. G., ALONSO, C., JESÚS, A. R. & CARVALHO, E. M. ( 2003). Characterization of the immune response to Leishmania infantum recombinant antigens. Microbes and Infection 5, 712.CrossRefGoogle Scholar
FEINBERG, A. P. & VOGELSTEIN, B. ( 1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle Scholar
FUERTES, M. A., PEREZ, J. M., SOTO, M., LOPEZ, M. C. & ALONSO, C. ( 2001). Calcium-induced conformational changes in Leishmania infantum kinetoplastid membrane protein-11. Journal of Biological Inorganic Chemistry 6, 107117.CrossRefGoogle Scholar
GUHL, F. & VALLEJO, G. A. ( 2003). Trypanosoma (Herpetosoma) rangeli Tejera, 1920: an updated review. Memorias do Instituto Oswaldo Cruz 98, 435442.CrossRefGoogle Scholar
HENRIKSSON, J., PORCEL, B., RYDAKER, M., RUIZ, A., SABAJ, V., GALANTI, N., CAZZULO, J. J., FRASCH, A. C. & PETTERSSON, U. ( 1995). Chromosome specific markers reveal conserved linkage groups in spite of extensive chromosomal size variation in Trypanosoma cruzi. Molecular and Biochemical Parasitology 73, 6374.CrossRefGoogle Scholar
JARDIM, A., HANSON, S., ULLMAN, B., McCUBBIN, W. D., KAY, C. M. & OLAFSON, R. W. ( 1995). Cloning and structure-function analysis of the Leishmania donovani kinetoplastid membrane protein-11. The Biochemical Journal 305, 315320.CrossRefGoogle Scholar
JENSEN, A. T., GASIM, S., ISMAIL, A., GAAFAR, A., KURTZHALS, J. A., KEMP, M., EL HASSAN, A. M., KHARAZMI, A. & THEANDER, T. G. ( 1998). Humoral and cellular immune responses to synthetic peptides of the Leishmania donovani kinetoplastid membrane protein-11. Scandinavian Journal of Immunology 48, 103109.CrossRefGoogle Scholar
MARAÑON, C., THOMAS, M. C., PLANELLES, L. & LÓPEZ, M. C. ( 2001). The immunization of A2/K(b) transgenic mice with the KMP11-HSP70 fusion protein induces CTL response against human cells expressing the T. cruzi KMP11 antigen: identification of A2-restricted epitopes. Molecular Immmunology 38, 279287.Google Scholar
MARAÑON, C., THOMAS, M. C., PUERTA, C., ALONSO, C. & LOPEZ, M. C. ( 2000). The stability and maturation of the H2A histone mRNAs from Trypanosoma cruzi are implicated in their post-transcriptional regulation. Biochimica et Biophysica Acta 1490, 110.CrossRefGoogle Scholar
MORALES, L., ROMERO, I., DIEZ, H., DEL PORTILLO, P., MONTILLA, M., NICHOLLS, S. & PUERTA, C. ( 2002). Characterization of a candidate Trypanosoma rangeli small nucleolar RNA gene and its application in a PCR-based parasite detection. Experimental Parasitology 102, 7280.CrossRefGoogle Scholar
MUKHOPADHYAY, S., SEN, P., BHATTACHARYYA, S., MAJUMDAR, S. & ROY, S. ( 1999). Immunoprophylaxis and immunotherapy against experimental visceral leishmaniasis. Vaccine 17, 291300.CrossRefGoogle Scholar
PALAU, M. T., MEJIA, A. J., VERGARA, U. & ZÚÑIGA, C. A. ( 2003). Action of Trypanosoma rangeli in infections with virulent Trypanosoma cruzi populations. Memorias do Instituto Oswaldo Cruz 98, 543548.CrossRefGoogle Scholar
PEARSON, W. R. ( 1990). Rapid and sensitive sequence comparison with FASTP and FASTA. Methods in Enzymology 183, 6398.CrossRefGoogle Scholar
PLANELLES, L., THOMAS, M. C., ALONSO, C. & LOPEZ, M. C. ( 2001). DNA immunization with Trypanosoma cruzi HSP70 fused to the KMP11 protein elicits a cytotoxic and humoral immune response against the antigen and leads to protection. Infection and Immunity 69, 65586563.CrossRefGoogle Scholar
PLANELLES, L., THOMAS, M. C., PULGAR, M., MARAÑON, C., GRABBE, S. & LOPEZ, M. C. ( 2002). Trypanosoma cruzi heat-shock protein-70 kDa, alone or fused to the parasite KMP11 antigen, induces functional maturation of murine dendritic cells. Immunology and Cell Biology 80, 241247.CrossRefGoogle Scholar
PUERTA, C., MARTIN, J., ALONSO, C. & LOPEZ, M. C. ( 1994). Isolation and characterization of the gene encoding histone H2A from Trypanosoma cruzi. Molecular and Biochemical Parasitology 64, 110.CrossRefGoogle Scholar
RAMIREZ, J. R., BERBERICH, C., JARAMILLO, A., ALONSO, C. & VELEZ, I. V. ( 1998). Molecular and antigenic characterization of the Leishmania (Viannia) panamensis kinetoplastid membrane protein-11. Memorias do Instituto Oswaldo Cruz 93, 247254.CrossRefGoogle Scholar
RAMIREZ, J. R., GILCHRIST, K., ROBLEDO, S., SEPULVEDA, J. C., MOLL, H., SOLDATI, D. & BERBERICH, C. ( 2001). Attenuated Toxoplasma gondii ts-4 mutants engineered to express the Leishmania antigen KMP-11 elicit a specific immune response in BALB/c mice. Vaccine 20, 455461.CrossRefGoogle Scholar
RODRIGUEZ, P., MONTILLA, M., NICHOLLS, S., ZARANTE, I. & PUERTA, C. ( 1998). Isoenzymatic characterization of Colombian strains of Trypanosoma cruzi. Memorias do Instituto Oswaldo Cruz 93, 739740.CrossRefGoogle Scholar
SALDANA, A. & SOUSA, O. E. ( 1996). Trypanosoma rangeli: epimastigote immunogenicity and cross-reaction with Trypanosoma cruzi. Journal of Parasitology 82, 363366.CrossRefGoogle Scholar
SAMBROOK, J. F. & RUSSELL, D. W. ( 2000). Molecular Cloning. A Laboratory Manual. 2nd. Edn. Cold Spring Harbor Laboratory, New York.
SANGER, F., NICKLEN, S. & COULSON, A. R. ( 1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 54635467.CrossRefGoogle Scholar
STEBECK, C. E., BARON, G. S., BEECROFT, R. P. & PEARSON, T. W. ( 1996). Molecular characterization of the kinetoplastid membrane protein-11 from African trypanosomes. Molecular and Biochemical Parasitology 81, 8188.CrossRefGoogle Scholar
STEBECK, C. E., BEECROFT, R. P., SINGH, B. N., JARDIM, A., OLAFSON, R. W., TUCKEY, C., PRENEVOST, K. D. & PEARSON, T. W. ( 1995). Kinetoplastid membrane protein-11 (KMP-11) is differentially expressed during the life cycle of African trypanosomes and is found in a wide variety of kinetoplastid parasites. Molecular and Biochemical Parasitology 71, 113.CrossRefGoogle Scholar
STEVENS, J. R., TEIXEIRA, M. M., BINGLE, L. E. & GIBSON, W. C. ( 1999). The taxonomic position and evolutionary relationships of Trypanosoma rangeli. International Journal for Parasitology 29, 749757.CrossRefGoogle Scholar
THOMAS, M. C., GARCÍA-PEREZ, J. L., ALONSO, C. & LÓPEZ, M. C. ( 2000). Molecular characterization of KMP11 from Trypanosoma cruzi: a cytoskeleton-associated protein regulated at the translational level. DNA and Cell Biology 19, 4757.CrossRefGoogle Scholar
THOMAS, M. C., LONGOBARDO, M. V., CARMELO, E., MARAÑON, C., PLANELLES, L., PATARROYO, M. E., ALONSO, C. & LOPEZ, M. C. ( 2001). Mapping of the antigenic determinants of the T. cruzi kinetoplastid membrane protein-11. Identification of a linear epitope specifically recognized by human Chagasic sera. Clinical and Experimental Immunology 123, 465471.Google Scholar
TOALDO, C. B., STEINDEL, M., SOUSA, M. A. & TAVARES, C. C. ( 2001). Molecular karyotype and chromosomal localization of genes encoding beta-tubulin, cystein proteinase, hsp 70 and actin in Trypanosoma rangeli. Memorias do Instituto Oswaldo Cruz 96, 113121.CrossRefGoogle Scholar
TOLSON, D. L., JARDIM, A., SCHNUR, L. F., STEBECK, C., TUCKEY, C., BEECROFT, R. P., TEH, H. S., OLAFSON, R. W. & PEARSON, T. W. ( 1994). The kinetoplastid membrane protein 11 of Leishmania donovani and African trypanosomes is a potent stimulator of T-lymphocyte proliferation. Infection and Immunity 62, 48934899.Google Scholar
TRUJILLO, C., RAMIREZ, R., VELEZ, I. D. & BERBERICH, C. ( 1999). The humoral immune response to the kinetoplastid membrane protein-11 in patients with American leishmaniasis and Chagas disease: prevalence of IgG subclasses and mapping of epitopes. Immunology Letters 70, 203209.Google Scholar
VALLEJO, G. A., GUHL, F., CARRANZA, J. C., LOZANO, L. E., SÁNCHEZ, J. L., JARAMILLO, J. C., GUALTERO, D., CASTAÑEDA, N., SILVA, J. C. & STEINDEL, M. ( 2002). kDNA markers define two major Trypanosoma rangeli lineages in Latin-America. Acta Tropica 81, 7782.CrossRefGoogle Scholar
VALLEJO, G. A., GUHL, F., CARRANZA, J. C., MORENO, J., TRIANA, O. & GRISARD, E. C. ( 2003). Parity between kinetoplast: DNA and mini-exon gene sequences supports either clonal evolution or speciation in Trypanosoma rangeli strains isolated from Rhodnius colombiensis, R. pallescens and R. prolixus in Colombia. Infection Genetics and Evolution 3, 3945.CrossRefGoogle Scholar
WORLD HEALTH ORGANIZATION (WHO) ( 2002). Control of Chagas disease. Second Report of the WHO Expert Committee. Technical Report Series No. 905. 8797.