Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-13T12:19:10.507Z Has data issue: false hasContentIssue false

Schistosoma mansoni and Echinostoma caproni excretory–secretory products differentially affect gene expression in Biomphalaria glabrata embryonic cells

Published online by Cambridge University Press:  05 December 2003

C. COUSTAU
Affiliation:
Parasitologie fonctionnelle et évolutive, UMR CNRS 5555, 52 Avenue Paul Alduy, Université de Perpignan, 66860 Perpignan cedex, France
G. MITTA
Affiliation:
Parasitologie fonctionnelle et évolutive, UMR CNRS 5555, 52 Avenue Paul Alduy, Université de Perpignan, 66860 Perpignan cedex, France
C. DISSOUS
Affiliation:
U. INSERM 547, Institut Pasteur de Lille, 1 Rue Pr. Calmette, 59019 Lille Cedex, France
F. GUILLOU
Affiliation:
Parasitologie fonctionnelle et évolutive, UMR CNRS 5555, 52 Avenue Paul Alduy, Université de Perpignan, 66860 Perpignan cedex, France
R. GALINIER
Affiliation:
Parasitologie fonctionnelle et évolutive, UMR CNRS 5555, 52 Avenue Paul Alduy, Université de Perpignan, 66860 Perpignan cedex, France
J.-F. ALLIENNE
Affiliation:
Parasitologie fonctionnelle et évolutive, UMR CNRS 5555, 52 Avenue Paul Alduy, Université de Perpignan, 66860 Perpignan cedex, France
S. MODAT
Affiliation:
Parasitologie fonctionnelle et évolutive, UMR CNRS 5555, 52 Avenue Paul Alduy, Université de Perpignan, 66860 Perpignan cedex, France

Abstract

Biomphalaria glabrata embryonic (Bge) cells have been shown to be a valuable in vitro cellular model for the study of snail host–parasite interactions. They both promote the growth and differentiation of various trematode species including Schistosoma mansoni, and Echinostoma caproni and share some morphological and functional features with circulating haemocytes. As an approach to investigate snail genes potentially regulated following exposure to trematode excretory–secretory (ES) products, we compared gene expression profiles of Bge cells exposed to saline solution, or saline solution containing ES products from S. mansoni or E. caproni, two trematode species parasitizing B. glabrata. Following differential display RT-PCR analysis we characterized 23 differentially displayed cDNAs and we focussed on the 5 cDNAs showing sequence similarity to known genes for expression validation. Using RT-PCR, we confirmed that ES products from S. mansoni and E. caproni differentially affect the expression levels of 4 out of the 5 transcripts. These partial transcripts corresponded to novel B. glabrata sequences, and showed significant sequence similarity to genes coding for (i) cytochrome C, (ii) methyl-binding proteins, (iii) glutamine synthetases, and (iv) protease inhibitors from the Kunitz family. The possible significance of these gene expression changes in host–parasite molecular interactions is discussed.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ADEMA, C. M. & LOKER, E. S. ( 1997). Specificity and immunobiology of larval digenean–snail associations. In Trematode Biology (ed. Fried, B. & Graczyk, T. K.), pp. 229263. CRC Press, Boca Raton, New York.
ALI, M., MARKHAM, A. F. & ISAACS, J. D. ( 2001). Application of differential display to immunological research. Journal of Immunological Methods 250, 2943.CrossRefGoogle Scholar
ANDERSON, I. & BRASS, A. ( 1998). Searching DNA databases for similarities to DNA sequences: when is a match significant? Bioinformatics 14, 349356.Google Scholar
ARMSTRONG, P. B. ( 2001). The contribution of proteinase inhibitors to immune defense. Trends in Immunology 22, 4752.CrossRefGoogle Scholar
ATAEV, G. L., FOURNIER, A. & COUSTAU, C. ( 1998). Comparison of Echinostoma caproni mother sporocyst development in vivo and in vitro using Biomphalaria glabrata snails and a B. glabrata embryonic cell line. Journal of Parasitology 84, 227235.Google Scholar
CHERNIN, E. ( 1963). Observations on hearts explanted in vitro from the snail Australorbis glabratus. Journal of Parasitology 49, 353364.CrossRefGoogle Scholar
COPPIN, J. F., LEFEVRE, C., CABY, S., COCQUERELLE, C., VICOGNE, J., COUSTAU, C. & DISSOUS, C. ( 2003). Gene expression changes in Schistosoma mansoni sporocysts induced by Biomphalaria glabrata embryonic cells. Parasitology Research 89, 113119.CrossRefGoogle Scholar
COUSTAU, C., ATAEV, G., JOURDANE, J. & YOSHINO, T. P. ( 1997). Schistosoma japonicum: in vitro cultivation of miracidium to daughter sporocyst using a Biomphalaria glabrata embryonic cell line. Experimental Parasitology 87, 7787.CrossRefGoogle Scholar
COUSTAU, C. & YOSHINO, T. P. ( 2000). Flukes without snails: advances in the in vitro cultivation of intramolluscan stages of trematodes. Experimental Parasitology 94, 6266.CrossRefGoogle Scholar
DISSOUS, C., DISSOUS, C. & CAPRON, A. ( 1981). Isolation and characterization of surface antigens from Schistosoma mansoni schistosomula. Molecular and Biochemical Parasitology 3, 215225.CrossRefGoogle Scholar
DUCLERMORTIER, P., LARDANS, V., SERRA, E., TROTTEIN, F. & DISSOUS, C. ( 1999). Biomphalaria glabrata embryonic cells express a protein with a domain homologous to the lectin domain of mammalian selectins. Parasitology Research 85, 481486.CrossRefGoogle Scholar
FORBES, E. G., CRONSHAW, A. D., MacBEATH, J. R. & HULMES, D. J. ( 1994). Tyrosine-rich acidic matrix protein (TRAMP) is a tyrosine-sulphated and widely distributed protein of the extracellular matrix. FEBS Letters 351, 433436.CrossRefGoogle Scholar
FUJII, N., MINETTI, C. A., NAKHASI, H. L., CHEN, S. W., BARBEHENN, E., NUNES, P. H. & NGUYEN, N. Y. ( 1992). Isolation, cDNA cloning, and characterization of an 18-kDa hemagglutinin and amebocyte aggregation factor from Limulus polyphemus. Journal of Biological Chemistry 267, 2245222459.Google Scholar
HANSEN, E. L. ( 1976). A Cell Line from Embryos of Biomphalaria glabrata (Pulmonata): Establishment and Characteristics. Academic Press, London.CrossRef
HUMBERT, E. & COUSTAU, C. ( 2001). Refractoriness of host haemocytes to parasite immunosuppressive factors as a putative resistance mechanism in the Biomphalaria glabrata–Echinostoma caproni system. Parasitology 122, 651660.CrossRefGoogle Scholar
IVANCHENKO, M. G., LERNER, J. P., McCORMICK, R. S., TOUMADJE, A., ALLEN, B., FISCHER, K., HEDSTROM, O., HELMRICH, A., BARNES, D. W. & BAYNE, C. J. ( 1999). Continuous in vitro propagation and differentiation of cultures of the intramolluscan stages of the human parasite Schistosoma mansoni. Proceedings of the National Academy of Sciences, USA 96, 49654970.CrossRefGoogle Scholar
KAGNOFF, M. F. & ECKMANN, L. ( 2001). Analysis of host responses to microbial infection using gene expression profiling. Current Opinion in Microbiology 4, 246250.CrossRefGoogle Scholar
KANOST, M. R. ( 1999). Serine proteinase inhibitors in arthropod immunity. Developmental and Comparative Immunology 23, 291301.CrossRefGoogle Scholar
KOZIAN, D. H. & KIRSCHBAUM, B. J. ( 1999). Comparative gene-expression analysis. Trends in Biotechnology 17, 7378.CrossRefGoogle Scholar
LARDANS, V., RINGAUT, V., DUCLERMORTIER, P., CADORET, J. P. & DISSOUS, C. ( 1997). Nucleotide and deduced amino acid sequences of Biomphalaria glabrata actin cDNA. DNA Sequence 7, 353356.CrossRefGoogle Scholar
LAURSEN, J. R. & YOSHINO, T. P. ( 1999). Biomphalaria glabrata embryonic (Bge) cell line supports in vitro miracidial transformation and early larval development of the deer liver fluke, Fascioloides magna. Parasitology 118, 187194.CrossRefGoogle Scholar
LIANG, P. & PARDEE, A. B. ( 1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967971.CrossRefGoogle Scholar
LIE-VENEMA, H., HAKVOORT, T. B., VAN HEMERT, F. J., MOORMAN, A. F. & LAMERS, W. H. ( 1998). Regulation of the spatiotemporal pattern of expression of the glutamine synthetase gene. Progress in Nucleic Acid Research and Molecular Biology 61, 243308.CrossRefGoogle Scholar
LIVAK, K. J. & SCHMITTGEN, T. D. ( 2001). Analysis of relative gene expression data using Real-Time quantitaive PCR and the 2−ΔΔCT method. Methods 25, 402408.Google Scholar
LOCKYER, A. E., JONES, C. S., NOBLE, L. R. & ROLLINSON, D. ( 2000). Use of differential display to detect changes in gene expression in the intermediate snail host Biomphalaria glabrata upon infection with Schistosoma mansoni. Parasitology 120, 399407.CrossRefGoogle Scholar
LODES, M. J. & YOSHINO, T. P. ( 1989). Characterization of excretory–secretory proteins synthesized in vitro by Schistosoma mansoni is primary sporocysts. Journal of Parasitology 75, 853862.CrossRefGoogle Scholar
LYKO, F. ( 2001). DNA methylation learns to fly. Trends in Genetics 17, 169172.CrossRefGoogle Scholar
MAIZELS, R. M., GOMEZ-ESCOBAR, N., GREGORY, W. F., MURRAY, J. & ZANG, X. ( 2001). Immune evasion genes from filarial nematodes. International Journal for Parasitology 31, 889898.CrossRefGoogle Scholar
MAX, S. R. ( 1990). Glucocorticoid-mediated induction of glutamine synthetase in skeletal muscle. Medicine and Science in Sports and Exercise 22, 325330.CrossRefGoogle Scholar
MEEHAN, R., LEWIS, J., CROSS, S., NAN, X., JEPPESEN, P. & BIRD, A. ( 1992). Transcriptional repression by methylation of CpG. Journal of Cell Science Supplement 16, 914.CrossRefGoogle Scholar
MILLER, A. N., RAGHAVAN, N., FITZGERALD, P. C., LEWIS, F. A. & KNIGHT, M. ( 2001). Differential gene expression in haemocytes of the snail Biomphalaria glabrata: effects of Schistosoma mansoni infection. International Journal for Parasitology 31, 687696.CrossRefGoogle Scholar
MONROY, F. & DRESDEN, M. H. ( 1996). The developmental expression of cysteine proteinases in Schistosoma mansoni. International Journal for Parasitology 23, 109112.CrossRefGoogle Scholar
OURA, C. A., TAIT, A. & SHIELS, B. R. ( 2001). Theileria annulata: identification, by differential mRNA display, of modulated host and parasite gene expression in cell lines that are competent or attenuated for differentiation to the merozoite. Experimental Parasitology 98, 1019.CrossRefGoogle Scholar
PFAFFL, M. W. ( 2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, 20032007.CrossRefGoogle Scholar
RAJEEVAN, M., RANAMUKHAARACHCHI, D. G., VERNON, S. D. & UNGER, E. R. ( 2001). Use of Real-Time Quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25, 443451.CrossRefGoogle Scholar
RAZIN, A. ( 1998). CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO Journal 17, 49054908.CrossRefGoogle Scholar
REGULA, K. M. & KIRSHENBAUM, L. A. ( 2003). ‘A one two punch’ for mitochondrial cytochrome c release. Mitochondrion 2, 223224.CrossRefGoogle Scholar
ROBERTSON, K. D. & JONES, P. A. ( 2000). DNA methylation: past, present and future directions. Carcinogenesis 21, 461467.CrossRefGoogle Scholar
RODER, K., HUNG, M. S., LEE, T. L., LIN, T. Y., XIAO, H., ISOBE, K. I., JUANG, J. L. & SHEN, C. J. ( 2000). Transcriptional repression by Drosophila methyl-CpG-binding proteins. Molecular Cell Biology 20, 74017409.CrossRefGoogle Scholar
SCHNEIDER, O. & ZELCK, U. E. ( 2001). Differential display analysis of hemocytes from schistosome-resistant and schistosome-susceptible intermediate hosts. Parasitology Research 87, 489491.Google Scholar
SHIMIZU, T. S., TAKAHASHI, K. & TOMITA, M. ( 1997). CpG distribution patterns in methylated and non-methylated species. Gene 205, 103107.CrossRefGoogle Scholar
SKULACHEV, V. P. ( 1998). Cytochrome c in the apoptotic and antioxidant cascades. FEBS Letters 423, 275280.CrossRefGoogle Scholar
SMARTT, C. T., KILEY, L. M., HILLYER, J. F., DASGUPTA, R. & CHRISTENSEN, B. M. ( 2001). Aedes aegypti glutamine synthetase: expression and gene structure. Gene 274, 3545.CrossRefGoogle Scholar
SUAREZ, I., BODEGA, G. & FERNANDEZ, B. ( 2002). Glutamine synthetase in brain: effect of ammonia. Neurochemistry International 41, 123142.CrossRefGoogle Scholar
TWEEDIE, S., CHARLTON, J., CLARK, V. & BIRD, A. ( 1997). Methylation of genomes and genes at the invertebrate-vertebrate boundary. Molecular Cell Biology 17, 14691475.CrossRefGoogle Scholar
YOSHINO, T. P. & LAURSEN, J. R. ( 1995). Production of Schistosoma mansoni daughter sporocysts from mother sporocysts maintained in synxenic culture with Biomphalaria glabrata embryonic (Bge) cells. Journal of Parasitology 81, 714722.CrossRefGoogle Scholar
YOSHINO, T. P., COUSTAU, C., MODAT, S. & CASTILLO, M. G. ( 1999). The Biomphalaria glabrata embryonic (BGE) molluscan cell line: establishment of an in vitro cellular model for the study of snail host–parasite interactions. Malacologia 41, 331343.Google Scholar