Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-14T06:14:48.074Z Has data issue: false hasContentIssue false

Genetic characterization and evaluation of pigmented maize (Zea mays L.) landraces of the North East Hill Region of India-an established centre of maize diversity

Published online by Cambridge University Press:  30 April 2024

Sristishila Baruah
Affiliation:
School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
Thounaojam Bharti
Affiliation:
School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
Duddukur Rajasekhar
Affiliation:
School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
Harshavardhan Tatiparthi
Affiliation:
School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
Ernieca Lyngdoh Nongbri
Affiliation:
School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
Devyani Sen*
Affiliation:
School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
*
Corresponding author: Devyani Sen; Email: devyani.sen@gmail.com

Abstract

The North East Hill Region (NEHR) of India is home to diverse maize landraces including pigmented accessions rich in antioxidants and nutritional properties. The present study attempted to characterize a representative collection of this mostly unexplored diversity. Altogether eighty-three local maize landraces from the seven hill states of the NEHR were studied with special emphasis on pigmentation diversity. For the morphological traits, a significant ANOVA indicated the presence of substantial genetic variability for which selection would be fruitful. A number of these accessions were found to have traits that help cope with moisture stress, improve stalk strength and optimize photosynthesis. Principal component analysis studies for the yield attributing traits indicated that ear weight was most variable. The bleaching/histological studies confirmed that anthocyanin pigment when present was always restricted to the aleurone layer of the kernels, typical of blue maize. Quantitative analysis for kernel anthocyanin/phlobaphene content also revealed genetic differences among the accessions. Genetic analysis using the model-based STRUCTURE indicated significant population structuring among the accessions. Specifically, for the pigmentation diversity studies both principal coordinate analysis and neighbour joining methods revealed near concurrent population structuring due in part to the high differentiation of seven of the twenty-one pigmentation specific loci studied. The results obtained provide comprehensive evidence of a significant amount of genetic differentiation among the landraces under study. Landraces are valuable reservoirs of favourable alleles for which selection can be made and, as in this study, identify accessions for breeding maize with enhanced levels of beneficial secondary metabolites.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addinsoft (2022) XLSTAT Statistical and Data Analysis Solution. New York, USA: Addinsoft. Available at https://www.xlstat.com/en.Google Scholar
Adhikari, S, Joshi, A, Kumar, A and Singh, NK (2021) Diversification of maize (Zea mays L.) through teosinte (Zea mays subsp. parviglumis Iltis and Doebley) allelic. Genetic Resources and Crop Evolution 68, 29832995. https://doi.org/10.1007/s10722-021-01170-z.CrossRefGoogle Scholar
Adom, KK and Liu, RH (2002) Antioxidant activity of grains. Journal of Agricultural and Food Chemistry 50, 61826187. https://doi.org/10.1021/jf0205099.CrossRefGoogle ScholarPubMed
Alvarado, G, López, M, Vargas, M, Pacheco-Gil, , Rodríguez, F, Burgueño, J and Crossa, J (2015) META-R (Multi Environment Trail Analysis with R for Windows) Version 6.04, https://hdl.handle.net/11529/10201, CIMMYT Research Data & Software Repository Network, V23.Google Scholar
Andorf, C, Beavis, WD, Hufford, M, Smith, S, Suza, WP, Wang, K, Woodhouse, M, Yu, J and Lubberstedt, T (2019) Technological advances in maize breeding: past, present and future. Theoretical and Applied Genetics 132, 817849. https://doi.org/10.1007/s00122-019-03306-3.CrossRefGoogle ScholarPubMed
Anonymous (2007) Guidelines for the conduct of tests for distinctness, uniformity and stability on maize (Zea mays. L). The protection of plant varieties and farmers rights authority, New Delhi. Plant Variety Journal India 1, 113.Google Scholar
Araus, JL, Slafer, GA and Serret, MD (2008) Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Science 27, 377412. https://doi.org/10.1080/07352680802467736.CrossRefGoogle Scholar
Bennetzen, J, Buckler, E, Chandler, V, Doebley, J, Dorweiler, J, Gaut, B, Freeling, M, Hake, S, Kellogg, E, Poethig, RS and Walbot, V (2001) Genetic evidence and the origin of maize. Latin American Antiquity 12, 8486. https://doi.org/10.2307/971759.CrossRefGoogle Scholar
Bhat, KV, Chandel, KPS, Shivakumar, TM and Sachan, JKS (1998) Isozyme diversity in Indian primitive maize landraces. Journal of Plant Biochemistry and Biotechnology 7, 2327. https://doi.org/10.1007/BF03263028.CrossRefGoogle Scholar
Brown, JJ, Mattes, MG, O'Reilly, C and Shepherd, NS (1989) Molecular characterization of rDt, a maize transposon of the ‘Dotted’ controlling element system. Molecular and General Genetics MGG 215, 239244. https://doi.org/10.1007/BF00339723.CrossRefGoogle ScholarPubMed
Bruggeman, SA, Horvath, DP, Fennell, AY, Gonzalez-Hernandez, JL and Clay, SA (2020) Teosinte (Zea mays ssp parviglumis) growth and transcriptomic response to weed stress identifies similarities and differences between varieties and with modern maize varieties. PLoS One 15, e0237715. https://doi.org/10.1371/journal.pone.0237715.CrossRefGoogle ScholarPubMed
Burr, FA, Burr, B, Scheffler, BE, Blewitt, M, Wienand, U and Matz, EC (1996) The maize repressor-like gene intensifier1 shares homology with the r1/b1 multigene family of transcription factors and exhibits missplicing. The Plant Cell 8, 12491259. https://doi.org/10.1105/tpc.8.8.1249.Google ScholarPubMed
Cassani, E, Puglisi, D, Cantaluppi, E, Landoni, M, Giupponi, L, Giorgi, A and Pilu, R (2017) Genetic studies regarding the control of seed pigmentation of an ancient European pointed maize (Zea mays L) rich in phlobaphenes: the ‘Nero Spinoso’ from the Camonica valley. Genetic Resources and Crop Evolution 64, 761773. https://doi.org/10.1007/s10722-016-0399-7.CrossRefGoogle Scholar
Chatham, LA and Juvik, JA (2021) Linking anthocyanin diversity, hue, and genetics in purple corn. G3 11, jkaa062. https://doi.org/10.1093/g3journal/jkaa062.CrossRefGoogle ScholarPubMed
Chatham, LA, Paulsmeyer, M and Juvik, JA (2019) Prospects for economical natural colorants: insights from maize. Theoretical and Applied Genetics 132, 29272946. https://doi.org/10.1007/s00122-019-03414-0.CrossRefGoogle ScholarPubMed
Das, OP, Morales, M and Messing, J (1994) Quantitative extraction of pericarp pigments. Maize Genetics Cooperation Newsletter 68, 7983.Google Scholar
de Pascual-Teresa, S and Sanchez-Ballesta, MT (2008) Anthocyanins: from plant to health. Phytochemistry Reviews 7, 281299. https://doi.org/10.1007/s11101-007-9074-0.CrossRefGoogle Scholar
Dhawan, NL (1964) Primitive maize in Sikkim. Maize Genetics Cooperation Newsletter 38, 6970.Google Scholar
Doyle, JJ and Doyle, JL (1990) Isolation of plant DNA from fresh tissue. Focus 12, 13–11.Google Scholar
Evanno, G, Regnaut, S and Goudet, J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 26112620. https://doi.org/10.1111/j.1365-294X.2005.02553.x.CrossRefGoogle ScholarPubMed
Excoffier, L, Smouse, PE and Quattro, J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479491. https://doi.org/10.1093/genetics/131.2.479.CrossRefGoogle ScholarPubMed
Fan, XM, Chen, HM, Tan, J, Xu, CX, Zhang, YD, Luo, LM, Huang, YX and Kang, MS (2008) Combining abilities for yield and yield components in maize. Maydica 53, 39.Google Scholar
Felipe de Mendiburu, F (2020) Agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-3.Google Scholar
Flint-Garcia, SA (2013) Genetics and consequences of crop domestication. Journal of Agricultural and Food Chemistry 61, 82678276. https://doi.org/10.1021/jf305511d.CrossRefGoogle ScholarPubMed
Food and Agriculture Organization of the United Nations (FAO) (2019) World Food and Agriculture: Statistical Pocketbook. Rome, Italy: FAO; ISBN 978-92-5-131849-2.Google Scholar
Gao, Z, Sun, L, Ren, JH, Liang, XG, Shen, S, Lin, S, Zhao, X, Chen, XM, Wu, G and Zhou, SL (2020) Detasseling increases kernel number in maize under shade stress. Agricultural and Forest Meteorology 280, 107811. https://doi.org/10.1016/j.agrformet.2019.107811.CrossRefGoogle Scholar
Gorjanc, G, Jenko, J, Hearne, SJ and Hickey, JM (2016) Initiating maize pre-breeding programs using genomic selection to harness polygenic variation from landrace populations. BMC Genomics 17, 115. https://doi.org/10.1186/s12864-015-2345-z.CrossRefGoogle ScholarPubMed
Goudet, J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity 86, 485486.CrossRefGoogle Scholar
Hallauer, AR and Carena, MJ (2009) Maize. In Carena, M (ed.), Cereals: Handbook of Plant Breeding, Vol 3. New York: Springer, pp. 398. https://doi.org/10.1007/978-0-387-72297-9_1.CrossRefGoogle Scholar
Holsinger, KE and Weir, BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting F ST. Nature Reviews Genetics 10, 639650. https://doi.org/10.1038/nrg2611.CrossRefGoogle ScholarPubMed
Ilyas, MZ, Park, H, Jang, SJ, Cho, J, Sa, KJ and Lee, JK (2023) Association mapping for evaluation of population structure, genetic diversity, and physiochemical traits in drought-stressed maize germplasm using SSR markers. Plants 12, 4092. https://doi.org/10.3390/plants12244092.CrossRefGoogle ScholarPubMed
Kalia, RK, Rai, MK, Kalia, S, Singh, R and Dhawan, AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 77, 309334. https://doi.org/10.1007/s10681-010-0286-9.CrossRefGoogle Scholar
Ku, LX, Zhao, WM, Zhang, J, Wu, LC, Wang, CL, Wang, PA, Zhang, WQ and Chen, YH (2010) Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theoretical and Applied Genetics 121, 951959. https://doi.org/10.1007/s00122-010-1364-z.CrossRefGoogle ScholarPubMed
Lago, C, Cassani, E, Zanzi, C, Landoni, M, Trovato, R and Pilu, R (2014) Development and study of a maize cultivar rich in anthocyanins: coloured polenta, a new functional food. Plant Breeding 133, 210217. https://doi.org/10.1111/pbr.12153.CrossRefGoogle Scholar
Lago, C, Landoni, M, Cassani, E, Cantaluppi, E, Doria, E, Nielsen, E, Giorgi, A and Pilu, R (2015) Study and characterization of an ancient European flint white maize rich in anthocyanins: Millo Corvo from Galicia. PLoS One 10, e0126521. https://doi.org/10.1371/journal.pone.0130110.CrossRefGoogle Scholar
Li, F, Vallabhaneni, R and Wurtzel, ET (2008) PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic-stress-induced root carotenogenesis. Plant Physiology 146, 13331345. https://doi.org/10.1104/pp.107.111120.CrossRefGoogle ScholarPubMed
Li, F, Tzfadia, O and Wurtzel, ET (2009) The phytoene synthase gene family in the Grasses: subfunctionalization provides tissue-specific control of carotenogenesis. Plant Signaling and Behavior 4, 208211. https://doi.org/10.4161/psb.4.3.7798.CrossRefGoogle ScholarPubMed
Li, Y, Fang, X and Lin, Z (2022) Convergent loss of anthocyanin pigments is controlled by the same MYB gene in cereals. Journal of Experimental Botany 73, 60896102. https://doi.org/10.1093/jxb/erac270.CrossRefGoogle ScholarPubMed
Lia, VV, Poggio, L and Confalonieri, VA (2009) Microsatellite variation in maize landraces from Northwestern Argentina: genetic diversity, population structure and racial affiliations. Theoretical and Applied Genetics 119, 10531067. https://doi.org/10.1007/s00122-009-1108-0.CrossRefGoogle ScholarPubMed
Matsuoka, Y, Vigouroux, Y, Goodman, MM, Sanchez, GJ, Buckler, E and Doebley, J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences 99, 60806084. https://doi.org/10.1073/pnas.052125199.CrossRefGoogle ScholarPubMed
Meirmans, PG (2006) Using the AMOVA framework to estimate a standardized genetic. Differentiation measure. Evolution 60, 23992402. https://doi.org/10.1111/j.0014-3820.2006.tb01874.x.CrossRefGoogle ScholarPubMed
Mohammadi, SA and Prasanna, BM (2003) Analysis of genetic diversity in crop plants-salient statistical tools and considerations. Crop Science 43, 12351248.CrossRefGoogle Scholar
Naveenkumar, KL, Sen, D, Vashum, S and Sanjenbam, M (2020) Genetic characterization and divergence studies of maize (Zea mays L.) lines developed from landraces indigenous to North Eastern Hill Region (NEHR) of India. Plant Genetic Resources 18, 231242. https://doi.org/10.1017/S1479262120000246.CrossRefGoogle Scholar
Nei, M (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences 70, 33213323. https://doi.org/10.1073/pnas.70.12.3321.CrossRefGoogle ScholarPubMed
Ngugi, K, Collins, JO and Muchira, S (2013) Combining, earliness, short anthesis to silking interval and yield based selection indices under intermittent water stress to select for drought tolerant maize. Australian Journal of Crop Science 7, 20142020.Google Scholar
Olivoto, T and Lúcio, ADC (2020) metan: an R package for multi-environment trial analysis. Methods in Ecology and Evolution 11, 783789. https://doi.org/10.1111/2041-210X.13384.CrossRefGoogle Scholar
O'Reilly, C, Shepherd, NS, Pereira, A, Schwarz-Sommer, Z, Bertram, I, Robertson, DS, Peterson, PA and Saedler, H (1985) Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1. The EMBO Journal 4, 877882. https://doi.org/10.1105/tpc.12.12.2311.CrossRefGoogle ScholarPubMed
Paauw, M, Koes, R and Quattrocchio, FM (2019) Alteration of flavonoid pigmentation patterns during domestication of food crops. Journal of Experimental Botany 70, 37193735. https://doi.org/10.1093/jxb/erz141.CrossRefGoogle ScholarPubMed
Paulsmeyer, M and Juvik, J (2021) Functional characterization of an anthocyanin dimalonyltransferase in maize. Molecules 26, 2020. https://doi.org/10.3390/molecules26072020.CrossRefGoogle ScholarPubMed
Peakall, R and Smouse, PE (2012) GENALEX 6.5: genetic analysis in EXCEL. Population genetic software for teaching and research – an update. Bioinformatics 28, 25372539. https://doi.org/10.1111/j.1471-8286.2005.01155.x.CrossRefGoogle ScholarPubMed
Peniche-Pavía, HA, Guzmán, TJ, Magaña-Cerino, JM, Gurrola-Díaz, CM and Tiessen, A (2022) Maize flavonoid biosynthesis, regulation, and human health relevance: a review. Molecules 27, 5166. https://doi.org/10.3390/molecules27165166.CrossRefGoogle ScholarPubMed
Petrescu, DC, Vermeir, I and Petrescu-Mag, RM (2020) Consumer understanding of food quality, healthiness, and environmental impact: a cross-national perspective. International Journal of Environmental Research and Public Health 17, 169. https://doi.org/10.3390/ijerph17010169.CrossRefGoogle Scholar
Petroni, K, Pilu, R and Tonelli, C (2014) Anthocyanins in corn: a wealth of genes for human health. Planta 240, 901911. https://doi.org/10.1007/s00425-014-2131-1.CrossRefGoogle Scholar
Piazza, P, Procissi, A, Jenkins, GI and Tonelli, C (2002) Members of the c1/pl1 regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins. Plant Physiology 128, 10771086. https://doi.org/10.1104/pp.010799.CrossRefGoogle ScholarPubMed
Pilu, R, Cassani, E, Sirizzotti, A, Petroni, K and Tonelli, C (2011) Effect of flavonoid pigments on the accumulation of fumonisin B1 in the maize kernel. Journal of Applied Genetics 52, 145152. https://doi.org/10.1007/s13353-010-0014-0.CrossRefGoogle ScholarPubMed
Portwood, JL, Woodhouse, MR, Cannon, EK, Gardiner, JM, Harper, LC, Schaeffer, ML, Walsh, JR, Sen, TZ, Cho, KT, Schott, DA and Braun, BL (2018) MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Research 47, D1146D1154. https://doi.org/10.1093/nar/gky1046.CrossRefGoogle Scholar
Prasanna, BM (2012) Diversity in global maize germplasm: characterization and utilization. Journal of Biosciences 37, 843855. https://doi.org/10.1007/s12038-012-9227-1.CrossRefGoogle ScholarPubMed
Pritchard, JK, Stephens, M and Donnelly, P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945959. https://doi.org/10.1534/genetics.116.195164.CrossRefGoogle ScholarPubMed
Radicella, JP, Brown, D, Tolar, LA and Chandler, VL (1992) Allelic diversity of the maize B regulatory gene: different leader and promoter sequences of two B alleles determine distinct tissue specificities of anthocyanin production. Genes and Development 6, 21522164. https://doi.org/10.1101/gad.6.11.2152.CrossRefGoogle ScholarPubMed
Rathod, NKK, Kumari, J, Hossain, F, Chhabra, R, Roy, S, Harish, GD, Bhardwaj, R, Gadag, RN and Misra, AK (2019) Characterization of Mimban maize landrace from North-Eastern Himalayan region using microsatellite markers. Journal of Plant Biochemistry and Biotechnology 29, 323335. https://doi.org/10.1007/s13562-019-00524-0.CrossRefGoogle Scholar
R Core Team (1993) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
R Core Team (2020) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at https://www.r-project.org (accessed 21 January 2024).Google Scholar
Reif, JC, Melchinger, AE, Xia, XC, Warburton, ML, Hoisington, DA, Vasal, SK, Srinivasan, G, Bohn, M and Frisch, M (2003) Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Science 43, 12751282. https://doi.org/10.2135/cropsci2003.1275.CrossRefGoogle Scholar
Rhoades, MM (1938) Effect of the Dt gene on the mutability of the a1 allele in maize. Genetics 23, 377. https://doi.org/10.1093/genetics/23.4.377.CrossRefGoogle Scholar
Ryu, SH, Werth, L, Nelson, S, Scheerens, JC and Pratt, RC (2013) Variation of kernel anthocyanin and carotenoid pigment content in USA/Mexico borderland landraces of maize. Economic Botany 67, 98109. https://doi.org/10.1007/s12231-013-9232-9.CrossRefGoogle Scholar
Sachan, JKS and Sarkar, KR (1982) Plant type of ‘Sikkim Primitives’. Maize Genetics Cooperation Newsletter 56, 122124.Google Scholar
Sachan, JS and Sarkar, KR (1986) Sikkim primitive maize – an overview. Indian Journal of Genetics and Plant Breeding 46, 153161.Google Scholar
Sandhu, S and Dhillon, BS (2021) Breeding plant type for adaptation to high plant density in tropical maize – a step towards productivity enhancement. Plant Breeding 140, 509518. https://doi.org/10.1111/pbr.12949.CrossRefGoogle Scholar
Sanjenbam, M, Sen, D, Tyagi, W and Chand, R (2018) Phenotypic diversity analysis and screening for northern corn leaf blight resistance in maize (Zea mays L.) landraces grown in North Eastern hill region of India. Indian Journal of Plant Genetic Resources 31, 286294. http://doi.org/10.5958/0976-1926.2018.00033.5.CrossRefGoogle Scholar
Selinger, DA and Chandler, VL (1999) A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway. The Plant Cell 11, 514. https://doi.org/10.1105/tpc.11.1.5.CrossRefGoogle ScholarPubMed
Selinger, DA and Chandler, VL (2001) B-Bolivia, an allele of the maize b1 gene with variable expression, contains a high copy retrotransposon-related sequence immediately upstream. Plant Physiology 125, 13631379. https://doi.org/10.1104/pp.125.3.1363.CrossRefGoogle ScholarPubMed
Sharma, SK and Brahmi, P (2011) Gene bank curators: towards implementation of the international treaty on plant genetic resources for food and agriculture by the Indian National Gene Bank. In: Frison, C, López, F and Esquinas Alcazar, JT (eds), Plant Genetic Resources and Food Security: Stakeholder Perspectives on the International Treaty on Plant Genetic Resources for Food and Agriculture. Oxon: FAO and Bioversity International, pp. 183196.Google Scholar
Sharma, L, Prasanna, BM and Ramesh, B (2010) Analysis of phenotypic and microsatellite-based diversity of maize landraces in India, especially from the North East Himalayan region. Genetica 138, 619631. https://doi.org/10.1007/s10709-010-9436-1.CrossRefGoogle ScholarPubMed
Singh, B (1977) Races of Maize in India. New Delhi: Indian Council of Agricultural Research.Google Scholar
Singh, AR, Singh, SB, Dutta, SK, Boopathi, T, Lungmuana, , Saha, S, Devi, MT and Singh, NH (2016) Multi cob-bearing popcorn (Pukazo maize): a unique landrace of Mizoram, North East, India. Current Science 110, 13921393.Google Scholar
Springer, NM and Stupar, RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Research 17, 264275. https://doi.org/10.1101/gr.5347007.CrossRefGoogle ScholarPubMed
Stewart, DW, Costa, C, Dwyer, LM, Smith, DL, Hamilton, RI and Ma, BL (2003) Canopy structure, light interception, and photosynthesis in maize. Agronomy Journal 95, 14651474. https://doi.org/10.2134/agronj2003.1465.CrossRefGoogle Scholar
Stitzer, MC and Ross-Ibarra, J (2018) Maize domestication and gene interaction. New Phytologist 220, 395408. https://doi.org/10.1111/nph.15350.CrossRefGoogle ScholarPubMed
Uribelarrea, M, Cárcova, J, Otegui, ME and Westgate, ME (2002) Pollen production, pollination dynamics, and kernel set in maize. Crop Science 42, 19101918. https://doi.org/10.2135/cropsci2002.1910.CrossRefGoogle Scholar
Wickham, H (2016) Data analysis. In ggplot2. Use R!. Cham: Springer, pp. 189201. https://doi.org/10.1007/978-3-319-24277-4_9.CrossRefGoogle Scholar
Zhang, F and Peterson, T (2005) Comparisons of maize pericarp color1 alleles reveal paralogous gene recombination and an organ-specific enhancer region. The Plant Cell 17, 903914. https://doi.org/10.1105/tpc.104.029660.CrossRefGoogle Scholar
Zhang, P, Chopra, S and Peterson, T (2000) A segmental gene duplication generated differentially expressed myb-homologous genes in maize. The Plant Cell 12, 23112322. https://doi.org/10.1105/tpc.12.12.2311.CrossRefGoogle ScholarPubMed
Zilic, S, Serpen, A, Akillioglu, G, Gökmen, V and Vancetovic, J (2012) Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry 60, 12241231. https://doi.org/10.1021/jf204367z.CrossRefGoogle ScholarPubMed
Supplementary material: File

Baruah et al. supplementary material

Baruah et al. supplementary material
Download Baruah et al. supplementary material(File)
File 488 KB