Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-30T04:39:04.629Z Has data issue: false hasContentIssue false

Genetic dissection of advanced soybean (Glycine max L.) germplasm for spring season cultivation in Pakistan

Published online by Cambridge University Press:  14 March 2024

Hasham Feroz Ghuman
Affiliation:
Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
Zaheer Ahmed
Affiliation:
Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
Bushra Sadia
Affiliation:
Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
Faisal Saeed Awan*
Affiliation:
Center of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
*
Corresponding author: Faisal Saeed Awan; Email: faisal.saeed@uaf.edu.pk

Abstract

Improvement in genetic gains of crops could be achieved by phenomics' characterization of agronomic, physiological and stress-related traits. Molecular and strategic breeding programmes require broad range of foreground and background phenotypic information for crop improvement. The current experiment was performed on 123 advanced soybean (Glycine max L.) genotypes including seven local lines belongs to four different maturity groups (000-lV) to estimate the endogenous potential of various yield-related traits. The experimental trial was repeated for two cropping seasons. Four traits out of six, yield per plant (YPP), number of seeds per plant, number of pods per plant and plant height (PH), showed maximum variation (CV%) that directly correlate with variability in the subjected population. PH, number of pods, 100-seed weight and YPP showed strong positive correlation in both years. Among the principal components, factors 1 and 2 showed maximum contribution in phenotypic variability ranges from 19 to 48.5% and 26 to 47.7% in the first and second years, respectively. Number of pods showed significant positive correlation with genotypes in both years. Dendrogram showed two distinct groups of soybean genotypes. Genetic variation and association among the accessions is indispensable for effective conservation and utilization of germplasm. Principal component analysis helps to identify the diverse genotypes that will be used as a parent for various breeding programmes. These phenotypic data will be used for detection of heat stress-related quantitative trait loci with genotypic data in genome-wide association studies experiments.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullah, N, Rafii Yusop, MY, Ithnin, M, Saleh, G and Latif, MA (2011) Genetic variability of oil palm parental genotypes and performance of its’ progenies as revealed by molecular markers and quantitative traits. Comptes Rendus Biologies 334, 290299.CrossRefGoogle ScholarPubMed
Akram, Z and Ahmad, Q (2019) Future prospects of soybean in Pakistan. Biomedical Journal of Scientific and Technical Research 15, 1156211563.CrossRefGoogle Scholar
Ali, A, Khan, SA, Khan, E, Ali, N, Hussain, I and Ahmad, F (2015) Genetic studies among diverse soybean (Glycine max (L.) Merrill) genotypes for variability and correlation at Swat. International journal of Biological Sciences 6, 165169.Google Scholar
Antalina, S (2000) Modern processing and utilization of legumes. Recent research and industrial achievement for soybean food in Japan. Proceeding of RILET-JIRCAS 28, 112.Google Scholar
Asad, SA, Wahid, MA, Farina, S, Ali, R and Muhammad, F (2020) Soybean production in Pakistan: experiences, challenges and prospects. International Journal of Agriculture and Biology 24, 9951005.Google Scholar
Balasubramaniyan, P and Palaniappan, SP (2003) Principles and practices of agronomy. Field crops. 45–46. Publishers Agr. Bios. India.Google Scholar
Broschat, TK (1979) Principal component analysis in horticultural research. Horticultural Science 14, 114117.Google Scholar
Chakravorty, A, Ghosh, PD and Sahu, PK (2013) Multivariate analysis of phenotypic diversity of landraces of rice of West Bengal. American Journal of Experimental Agriculture 3, 110123.CrossRefGoogle Scholar
Chen, QS, Zhang, ZC, Liu, CY, Xin, DW, Qiu, HM, Shan, DP and Hu, GH (2007) QTL analysis of major agronomic traits in soybean. Agricultural Sciences in China 6, 399405.CrossRefGoogle Scholar
Cui, Z, Carter, TE Jr, Burton, WJ and Wells, R (2001) Phenotypic diversity of modern Chinese and North American soybean cultivars. Crop Science 41, 19541967.CrossRefGoogle Scholar
Das, SP, Harer, PN and Biradar, AB (2001) Genetic divergence and selection of genotypes in soybean. Journal of Maharashtra Agricultural Universities 25, 250252.Google Scholar
Din, I, Munsif, F, Shah, IA, Khan, H, Khan, FU, Uddin, S and Islam, T (2018) Genetic variability and heritability for yield and yield associated traits of wheat genotypes in Nowshera valley, Pakistan. Pakistan Journal of Agricultural Research 31, 216222.CrossRefGoogle Scholar
Dornbos, DL and Mullen, RE (1991) Influence of stress during soybean seed fill on seed weight, germination, and seedling growth rate. Journal of Plant Sciences 71, 373383.Google Scholar
Dubey, N, Avinashe, HA and Shrivastava, AN (2018 a) Principal component analysis in advanced genotypes of soybean [Glycine max (L.) Merrill] over seasons. Plant Archives 18, 501506.Google Scholar
Dubey, N, Avinashe, HA and Shrivastava, AN (2018 b) Genetic parameters and character association studies of soybean genotypes in Madhya Pradesh region. Annals of Biology 34, 207211.Google Scholar
Federer, WT (2002) Construction and analysis of an augmented lattice square design. Biometrical Journal 44, 251257.3.0.CO;2-N>CrossRefGoogle Scholar
Ghafoor, A, Sharif, A, Ahmad, Z, Zahid, MA and Rabbani, MA (2001) Genetic diversity in blackgram (Vigna mungo (L.) Hepper). Field Crops Research 69, 183190.CrossRefGoogle Scholar
Ghafoor, A, Gulbaaz, FN, Afzal, M, Ashraf, M and Arshad, M (2003) Inter-relationship between SDS-PAGE markers and agronomic traits in chickpea (Cicer arietinum L.). Pakistan Journal of Botany 35, 613624.Google Scholar
GOP Government of Pakistan (2019) Available at http://www.finance.gov.pk/survey/chapters_19/2-Agriculture.pdf (Accessed May 21, 2020).Google Scholar
Gulnaz, S, Zulkiffal, M, Sajjad, M, Ahmed, J, Musa, M, Abdullah, M, Ahsan, A and Rehman, A (2019) Identifying Pakistani wheat landraces as genetic resources for yield potential, heat tolerance and rust resistance. International Journal of Agriculture and Biology 21, 520526.Google Scholar
Haider, MS, Khan, IA, Jaskani, MJ, Naqvi, SA, Hameed, M, Azam, M, Khan, AA and Pintaud, JC (2015) Assessment of morphological attributes of date palm accessions of diverse agro-ecological origin. Pakistan Journal of Botany 47, 11431151.Google Scholar
Hashash, EF (2016) Genetic diversity of soybean yield based on cluster and principal component analyses. Journal of Advances in Biology & Biotechnology 10, 19.CrossRefGoogle Scholar
Haussmann, BIG, Parzies, HK, Presterl, T, Susic, Z and Miedaner, T (2004) Plant genetic resources in crop improvement. Plant Genetic Resources 2, 321.CrossRefGoogle Scholar
Iqbal, Z, Arshad, M, Ashraf, M, Mahmood, T and Waheed, A (2008) Evaluation of soybean (Glycine max (L.) Merrill) germplasm for some important morphological traits using multivariate analysis. Pakistan Journal of Botany 40, 23232328.Google Scholar
Iqbal, M, Raja, NI, Yasmeen, F, Hussain, M, Ejaz, M and Shah, MA (2017) Impacts of heat stress on wheat: a critical review. Advances in Crop Science and Technology 5, 0109.CrossRefGoogle Scholar
Jha, A, Shrivastava, AN and Mishra, S (2016) Principal component analysis in advanced genotypes of soybean (Glycine max (L.) Merrill) during Kharif–2014. Advances 5, 3508.Google Scholar
Kumar, S and Sharma, NK (2018) Level of attitude towards soybean cultivation practices by the farmers. Indian Journal of Extension Education 18, 4245.Google Scholar
Mehmood, A, Luo, S, Ahmad, NM, Dong, C, Mahmood, T, Sajid, Y, Jaskani, MJ and Sharp, P (2016) Molecular variability and phylogenetic relationships of guava (Psidium guajava L.) cultivars using inter-primer binding site (iPBS) and microsatellite (SSR) markers. Genetic Resources and Crop Evolution 63, 13451361.CrossRefGoogle Scholar
Mukul, MM and Akter, N (2021) Morpho-anatomical variability, principal component analysis and Euclidean clustering of Tossa jute (Corchorus olitorius L.). Heliyon 7, e07042.CrossRefGoogle ScholarPubMed
Ojo, DK, Ajayi, AO and Oduwaye, OA (2012) Genetic relationships among soybean accessions based on morphological and RAPDs techniques. Pertanika Journal of Tropical Agricultural Sciences 35, 237248.Google Scholar
Pakistan. Office of the Economic Adviser (2022–2023) Economic survey of Pakistan.Google Scholar
Pooja, SS, Dhanda, , Yadav, NR, Beniwal, and Anu, RS (2018) Estimation of genetic variability in recombinant inbred lines of bread wheat (Triticum aestivum L.) for yield and yield component traits. International Journal of Chemical Studies 6, 10061011.Google Scholar
Reynolds, M and Langridge, P (2016) Physiological breeding. Current Opinion in Plant Biology 31, 162171.CrossRefGoogle ScholarPubMed
Shahid, M, Saleem, MF, Anjum, SA and Afzal, I (2017) Biochemical markers assisted screening of Pakistani wheat (Triticum aestivum L.) cultivars for terminal heat stress tolerance. Pakistan Journal of Agricultural Sciences 54, 837845.CrossRefGoogle Scholar
Smith, SE, Guarino, L, Doss, AA and Conta, DM (1995) Morphological and agronomic affinities among Middle Eastern alfalfas accessions from Oman and Yemen. Crop Science 35, 11881194.CrossRefGoogle Scholar
Thompson, JA, Nelson, RL and Vodkin, LO (1998) Identification of diverse soybean germplasm using RAPD markers. Crop Science 38, 13481355.CrossRefGoogle Scholar
Wang, B, Zhang, L, Dai, H, Wang, C, Li, W and Xu, R (2013) Genetic variation analysis, correlation analysis and principal component analysis on agronomic traits of summer plantation soybean (Glycine max Merr.) in HuangHuai-Hai region. Agricultural Biotechnology 2, 2529.Google Scholar
Yan, W and Tinker, NA (2005) An integrated biplot analysis system for displaying, interpreting, and exploring genotype × environment interaction. Crop Science 45, 10041016.CrossRefGoogle Scholar
Yaqoob, M (2016) Estimation of genetic variability, heritability and genetic advance for yield and yield related traits in wheat under rainfed conditions. Journal of Agricultural Research (03681157), 54, 114.Google Scholar
Yu, CY, Hu, SW, Zhao, HX, Guo, AG and Sun, GL (2005) Genetic distances revealed by morphological characters, isozymes, proteins and RAPD markers and their relationships with hybrid performance in oilseed rape (Brassica napus L.). Theoretical and Applied Genetics 110, 511518.CrossRefGoogle ScholarPubMed
Zafar, AH, Ahmad, M and Rehman, SU (2008) Study of some performance traits in Sahiwal cows during different periods. Pakistan Veterinary Journal 28, 8488.Google Scholar
Supplementary material: File

Ghuman et al. supplementary material

Ghuman et al. supplementary material
Download Ghuman et al. supplementary material(File)
File 557.4 KB