Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-12T10:31:37.577Z Has data issue: false hasContentIssue false

Crystal structure of low-cristobalite-type Al0.5Ga0.5PO4: A combined Rietveld refinement of neutron and X-ray diffraction data

Published online by Cambridge University Press:  01 March 2012

S. N. Achary
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai (400 085), India
A. K. Tyagi
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai (400 085), India
S. K. Kulshreshtha
Affiliation:
Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Mumbai (400 085), India
O. D. Jayakumar
Affiliation:
Novel Materials and Structural Chemistry Division, Bhabha Atomic Research Centre, Mumbai (400 085), India
P. S. R. Krishna
Affiliation:
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai (400 085), India
A. B. Shinde
Affiliation:
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai (400 085), India
K. R. Chakraborty
Affiliation:
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai (400 085), India

Abstract

The low-cristobalite-type modification of Al0.5Ga0.5PO4 is prepared by annealing the amorphous precipitate of stoichiometric phosphate at 1300 °C. The phase purity of the sample is ascertained by powder X-ray diffraction. The crystal structure is refined by Rietveld refinements of the neutron and X-ray diffraction data of the polycrystalline powder. This compound crystallizes in an orthorhombic lattice with unit cell parameters, a=7.0295(8), b=7.0132(8), and c=6.9187(4) Å, V=341.08(6) Å3, Z=4 (Space group C 2221, No. 20). The crystal structure analysis reveals the random distribution of the Al3+ and Ga3+ having tetrahedral coordination with typical M–O (M=Al3+:Ga3+) bond lengths as 1.74 Å. Similarly, the P5+ have tetrahedral coordination with typical P–O bond lengths 1.52–1.54 Å. The Mo4 and PO4 tetraheda are linked by common corners forming a three-dimensional framework lattice. The details of the crystal structure are presented in this paper.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achary, S. N., Jayakumar, O. D., Tyagi, A. K., and Kulshreshtha, S. K. (2003). “Preparation, phase transition and thermal expansion studies on low-cristobalite type Al1−xGaxPO4 (x=0.0, 0.20, 0.50, 0.80 and 1.00),” J. Solid State Chem.JSSCBI 176, 3746.CrossRefGoogle Scholar
Achary, S. N., Mishra, R., Jayakumar, O. D., Tyagi, A. K., and Kulshreshtha, S. K. (2004). “On α-β phase transition of cristobalite type Al1−xGaxPO4 (0.00⩽x⩽1.00)” (unpublished).Google Scholar
Evans, J. S. O., Mary, T. A., and Sleight, A. W. (1997). “Negative thermal expansion in a large molybdate and tungstate family,” J. Solid State Chem.JSSCBI10.1006/jssc.1997.7605 133, 580583.CrossRefGoogle Scholar
Evans, J. S. O., Mary, T. A., Vogt, T., Subramanian, M. A., and Sleight, A. W. (1996). “Negative thermal expansion in ZrW 2O8 and HfW 2O8,” Chem. Mater.CMATEX10.1021/cm9602959 8, 28092823.CrossRefGoogle Scholar
Hummel, F. A. (1949). “Properties of some substances isostructural with silicaJ. Am. Ceram. Soc.JACTAW 32, 320326.CrossRefGoogle Scholar
Kulshreshtha, S. K., Jayakumar, O. D., and Sudarsan, V. (2004). “31P and 27Al NMR study of Al1−xGaxPO4,” J. Phys. Chem. SolidsJPCSAW 65, 11411146.CrossRefGoogle Scholar
Mooney, R. C. L. (1956). “The crystal structure of aluminum phosphate and gallium Phosphate, low cristobalite type,” Acta Crystallogr.ACCRA910.1107/S0365110X56001996 9, 728734.CrossRefGoogle Scholar
Ng, H. N., and Calvo, C. (1977). “X-ray study of the twinning and phase transformation of phosphocristobalite (AlPO4),” Can. J. Phys.CJPHAD 55, 677683.CrossRefGoogle Scholar
Perloff, A. (1956). “Temperature inversion of anhydrous gallium orthophosphate,” J. Am. Ceram. Soc.JACTAW 39, 8388.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (2000). Fullprof 2000: A Program for Rietveld, Profile Matching and Integrated Intensity Refinements for X-ray and Neutron Data, Version 1.6, Laboratoire Leon Brillouin, Gif-sur-Yvette, France.Google Scholar