Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-12T18:44:55.022Z Has data issue: false hasContentIssue false

Effects of hydrogen on the interactions of fuel cell sealing glasses with interconnect alloys

Published online by Cambridge University Press:  29 February 2012

S. T. Misture*
Affiliation:
New York State College of Ceramics at Alfred University, Alfred, New York 14802
*
a)Electronic mail: misture@alfred.edu

Abstract

In situ X-ray diffraction was used to study the interactions of the PNNL G18 fuel cell sealing glasses with the oxides that form on candidate interconnect alloys and with the ebrite alloy. Experiments under 4% hydrogen and air at temperatures up to 1000 °C showed that the sealant reacts rapidly with alumina and chromia, but not with NiO. The crystallization of the high-CTE phase BaCrO4 was noted for G18 in contact with chromia or ebrite under air, but reducing conditions inhibit the crystallization. The reactions in all cases begin within a few hours at temperatures above 800 °C and go to completion or near completion after ∼12 h.

Type
X-Ray Diffraction
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chou, Y.-S. and Stevenson, J. W. (2005). “Long-term thermal cycling of phlogopite mica-based compressive seals for solid oxide fuel cells,” J. Power Sources JPSODZ 10.1016/j.jpowsour.2004.08.030 140, 340345.CrossRefGoogle Scholar
Dolan, M. D. and Misture, S. T. (2007). “Development of an improved devitrifiable fuel cell sealing glass II. Crystallization behavior and structures of crystalline phases,” J. Electrochem. Soc. JESOAN 10.1149/1.2737664 154, B700B711.CrossRefGoogle Scholar
Eichler, K., Solow, G., Otschik, P., and Schaffrath, W. (1999). “BAS (BaO⋅Al2O3⋅SiO2)-glasses for high temperature applications,” J. Eur. Ceram. Soc. JECSER 10.1016/S0955-2219(98)00382-3 19, 11011104.CrossRefGoogle Scholar
Fergus, J. W. (2005). “Metallic interconnects for solid oxide fuel cells,” Mater. Sci. Eng., A MSAPE3 10.1016/j.msea.2005.02.047 397, 271283.CrossRefGoogle Scholar
Flügel, A., Dolan, M. D., Varshneya, A. K., Zheng, Y., Coleman, N., Hall, M., Earl, D., and Misture, S. T. (2007). “Development of an improved devitrifiable fuel cell sealing glass I. Bulk properties,” J. Electrochem. Soc. JESOAN 10.1149/1.2728291 154, B601B608.CrossRefGoogle Scholar
Meinhardt, K. D., Vienna, J. D., Armstrong, T. R., and Pederson, L. R. (2002) “Glass-ceramic material and method of making,” U.S. Patent No. 6,430,966.Google Scholar
Misture, S. T. (2003). “Large-volume atmosphere-controlled high-temperature X-ray diffraction furnace,” Meas. Sci. Technol. MSTCEP 10.1088/0957-0233/14/7/326 14, 10911098.CrossRefGoogle Scholar
NIST (2003a). DTA Temperature Standard 8759, National Institute of Standards and Technology, Gaithersburg, Maryland.Google Scholar
NIST (2003b). DTA Temperature Standard 8760, National Institute of Standards and Technology, Gaithersburg, Maryland.Google Scholar
Pascual, M. J., Durán, A., and Pascual, L. (2002). “Sintering behaviour of composite materials borosilicate glass-ZrO2 fibre composite materials,” J. Eur. Ceram. Soc. JECSER 22, 15131524.CrossRefGoogle Scholar
Pistorius, C. W. F. T. and Pistorius, M. C. (1962). “Lattice constants and thermal-expansion properties of the chromates and celenates of lead, strontium and barium,” Z. Kristallogr. ZEKRDZ 117, 259271.CrossRefGoogle Scholar
Singh, P., Stevenson, J., Khaleel, M., Surdoval, W., Collins, D., and Wilson, L. (2003). “SOFC Seals: SECA CTP Seal Meeting Overview,” SECA Core Technology Program Review Meeting, Albany, New York, September-October 2003. 〈http://www.netl.doe.gov/publications/proceedings/03/seca-review/Singh.pdf〉.Google Scholar
Sohn, S.-B., Choi, S.-Y., Kim, G.-H., Song, H.-S., and Kim, G.-D. (2002). “Stable sealing glass for planar solid oxide fuel cell,” J. Non-Cryst. Solids JNCSBJ 10.1016/S0022-3093(01)01042-0 297, 103112.CrossRefGoogle Scholar
Stevenson, J. (2003). “SOFC seals: Materials status,” SECA Core Technology Program—SOFC Seal Meeting, Albuquerque, NM, July, 〈http://www.netl.doe.gov/publications/proceedings/03/seca-seal/OverviewStevenson.pdf〉.Google Scholar
Tietz, F., Buchkremer, H.-P., and Stöver, D. (2002). “Components manufacturing for solid oxide fuel cells,” Solid State Ionics SSIOD3 152–153, 373381.CrossRefGoogle Scholar
Yang, Z., Stevenson, J. W., and Meinhardt, K. D. (2003a). “Chemical interactions of barium-calcium-aluminosilicate-based sealing glasses with oxidation resistant alloys,” Solid State Ionics SSIOD3 10.1016/S0167-2738(03)00160-7 160, 213225.CrossRefGoogle Scholar
Yang, Z. G., Walker, M., Xia, G., Singh, P., and Stevenson, J. (2003b). “Advanced alloy interconnect development,” SECA Core Technology Program Review Meeting, Albany, New York, September-October 2003. 〈http://www.netl.doe.gov/publications/proceedings/03/seca-review/Yang.pdf〉.Google Scholar
Yang, Z., Meinhardt, K. D., and Stevenson, J. W. (2003c). “Chemical compatibility of barium-calcium-aluminosilicate-based sealing glasses with the ferritic stainless steel interconnect in SOFCs,” J. Electrochem. Soc. JESOAN 10.1149/1.1590325 150, A1095A1101.CrossRefGoogle Scholar