Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-16T05:10:41.525Z Has data issue: false hasContentIssue false

CURRENT AND POTENTIAL APPLICATIONS OF 3D PRINTING IN A GENERAL HOSPITAL

Published online by Cambridge University Press:  19 June 2023

Sayfeddine Eddous
Affiliation:
Groupe Hospitalier Paris Saint-Joseph; Laboratoire Genie Industriel, CentraleSupélec, Université Paris-Saclay
Guillaume Lamé*
Affiliation:
Laboratoire Genie Industriel, CentraleSupélec, Université Paris-Saclay
Benoît Decante
Affiliation:
Groupe Hospitalier Paris Saint-Joseph;
Bernard Yannou
Affiliation:
Laboratoire Genie Industriel, CentraleSupélec, Université Paris-Saclay
Antoine Agathon
Affiliation:
Groupe Hospitalier Paris Saint-Joseph;
Laure Aubrège
Affiliation:
Groupe Hospitalier Paris Saint-Joseph;
Valérie Talon
Affiliation:
Groupe Hospitalier Paris Saint-Joseph;
Éléonore Dacosta-Noble
Affiliation:
Groupe Hospitalier Paris Saint-Joseph;
*
Lamé, Guillaume, Paris Saclay University, France, guillaume.lame@centralesupelec.fr

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

3D printing is widely touted as a game changer in medicine and surgery, paving the way for point-of-care production of personalised medical devices. Nonetheless, to date, most reported applications of 3D printing in healthcare are restricted to specific scenarios in a few surgical disciplines, and little research exists on how 3D printing can be deployed more systematically beyond pioneer surgical departments. To understand the potential for 3D printing at a hospital level, we report the results of an interview study in a French general hospital. We analyse the current use of 3D printing and estimate the potential for new applications. We explore what share of these applications could be internalised, and what would be the organisational implications and the key success factors for an internal 3D printing unit. We find a large untapped potential for internal production of 3D printed products, spanning a much broader range of applications and hospital departments than what currently exists in the hospital. We then discuss important criteria to develop in-house 3D printing.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

Aydin, A., Demirtas, Z., Ok, M., Erkus, H., Cebi, G., Uysal, E., Gunduz, O. and Ustundag, C.B. (2021) ‘3D printing in the battle against COVID-19’, Emergent Materials, 4(1), 363386, available: http://dx.doi.org/10.1007/s42247-021-00164-y.CrossRefGoogle ScholarPubMed
Ballard, D.H., Mills, P., Duszak, R. Jr., Weisman, J.A., Rybicki, F.J. and Woodard, P.K. (2020) ‘Medical 3D Printing Cost-Savings in Orthopedic and Maxillofacial Surgery: Cost Analysis of Operating Room Time Saved with 3D Printed Anatomic Models and Surgical Guides’, Academic Radiology, 27(8), 11031113, available: http://dx.doi.org/10.1016/j.acra.2019.08.011.CrossRefGoogle ScholarPubMed
Calvo-Haro, J.A., Pascau, J., Asencio-Pascual, J.M., Calvo-Manuel, F., Cancho-Gil, M.J., Del Cañizo López, J.F., Fanjul-Gómez, M., García-Leal, R., González-Casaurrán, G., González-Leyte, M., León-Luis, J.A., Mediavilla-Santos, L., Ochandiano-Caicoya, S., Pérez-Caballero, R., Ribed-Sánchez, A., Río-Gómez, J., Sánchez-Pérez, E., Serrano-Andreu, J., Tousidonis-Rial, M., Vaquero-Martín, J., José, García San, and Perez-Mañanes, S., R. (2021) ‘Point-of-care manufacturing: a single university hospital's initial experience’, 3D Printing in Medicine, 7(1), 11, available: http://dx.doi.org/10.1186/s41205-021-00101-z.CrossRefGoogle ScholarPubMed
Cash, P., Isaksson, O., Maier, A. and Summers, J. (2022) ‘Sampling in design research: Eight key considerations’, Design Studies, 78, 101077, available: http://dx.doi.org/https://doi.org/10.1016/j.destud.2021.101077.CrossRefGoogle Scholar
Daryabor, A., Kobayashi, T., Saeedi, H., Lyons, S.M., Maeda, N. and Naimi, S.S. (2022) ‘Effect of 3D printed insoles for people with flatfeet: A systematic review’, Assistive Technology, 1-11, available: http://dx.doi.org/10.1080/10400435.2022.2105438.Google Scholar
Diment, L.E., Thompson, M.S. and Bergmann, J.H.M. (2017) ‘Clinical efficacy and effectiveness of 3D printing: a systematic review’, BMJ Open, 7(12), e016891, available: http://dx.doi.org/10.1136/bmjopen-2017-016891.CrossRefGoogle ScholarPubMed
Dobish, R., Chambers, C.R. and Gill, S. (2018) ‘Centralized preparation of chemotherapy for remote administration’, Journal of Oncology Pharmacy Practice, 25(5), 11741181, available: http://dx.doi.org/10.1177/1078155218808354.CrossRefGoogle ScholarPubMed
Kamio, T., Hayashi, K., Onda, T., Takaki, T., Shibahara, T., Yakushiji, T., Shibui, T. and Kato, H. (2018) ‘Utilizing a low-cost desktop 3D printer to develop a “one-stop 3D printing lab” for oral and maxillofacial surgery and dentistry fields’, 3D Printing in Medicine, 4(1), 6, available: http://dx.doi.org/10.1186/s41205-018-0028-5.CrossRefGoogle ScholarPubMed
Langridge, B., Momin, S., Coumbe, B., Woin, E., Griffin, M. and Butler, P. (2018) ‘Systematic Review of the Use of 3-Dimensional Printing in Surgical Teaching and Assessment’, Journal of Surgical Education, 75(1), 209221, available: http://dx.doi.org/10.1016/j.jsurg.2017.06.033.CrossRefGoogle ScholarPubMed
Lanzarone, E., Marconi, S., Conti, M., Auricchio, F., Fassi, I., Modica, F., Pagano, C. and Pourabdollahian, G. (2019) ‘Hospital Factory for Manufacturing Customised, Patient-Specific 3D Anatomo-Functional Models and Prostheses’ in Tolio, T., Copani, G. and Terkaj, W., eds., Factories of the Future: The Italian Flagship Initiative, Cham: Springer International Publishing, 233254.CrossRefGoogle Scholar
Lee, N. (2016) ‘The Lancet Technology: 3D printing for instruments, models, and organs?’, The Lancet, 388(10052), 1368, available: http://dx.doi.org/10.1016/S0140-6736(16)31735-4.CrossRefGoogle ScholarPubMed
Lemarteleur, V., Peycelon, M., Sablayrolles, J.-L., Plaisance, P., El-Ghoneimi, A. and Ceccaldi, P.-F. (2021) ‘Realization of Open Software Chain for 3D Modeling and Printing of Organs in Simulation Centers: Example of Renal Pelvis Reconstruction’, Journal of Surgical Education, 78(1), 232244, available: http://dx.doi.org/10.1016/j.jsurg.2020.06.035.CrossRefGoogle ScholarPubMed
Marshall, D.R. and McGrew, D.A. (2017) ‘Creativity and Innovation in Health Care: Opening a Hospital Makerspace’, Nurse Leader, 15(1), 5658, available: http://dx.doi.org/10.1016/j.mnl.2016.10.002.CrossRefGoogle Scholar
Martelli, N., Serrano, C., van den Brink, H., Pineau, J., Prognon, P., Borget, I. and El Batti, S. (2016) ‘Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review’, Surgery, 159(6), 14851500, available: http://dx.doi.org/10.1016/j.surg.2015.12.017.CrossRefGoogle Scholar
Maruthappu, M. and Keogh, B. (2014) ‘How might 3D printing affect clinical practice?’, BMJ : British Medical Journal, 349, g7709, available: http://dx.doi.org/10.1136/bmj.g7709.CrossRefGoogle ScholarPubMed
Peel, S. and Eggbeer, D. (2016) ‘Additively manufactured maxillofacial implants and guides – achieving routine use’, Rapid Prototyping Journal, 22(1), 189199, available: http://dx.doi.org/10.1108/RPJ-01-2014-0004.CrossRefGoogle Scholar
Pierreville, J., Serrano, C., van den Brink, H., Prognon, P., Pineau, J. and Martelli, N. (2018) ‘Dispositifs médicaux et modèles anatomiques produits par impression 3D : quelle diffusion et quelles utilisations dans les établissements de santé français ?’, Annales Pharmaceutiques Françaises, 76(2), 139146, available: http://dx.doi.org/10.1016/j.pharma.2017.12.001.CrossRefGoogle Scholar
Polykarpou, S. (2020) Organizing Digital Innovation in Healthcare, unpublished thesis, University of Cambridge.Google Scholar
Pourabdollahian, G. and Copani, G. (2017) ‘A New Perspective of Product-Service Business Models for Customized Manufacturing in Healthcare’ in Pfannstiel, M. A. and Rasche, C., eds., Service Business Model Innovation in Healthcare and Hospital Management: Models, Strategies, Tools, Cham: Springer International Publishing, 87109.CrossRefGoogle Scholar
Robar, J.L., Kammerzell, B., Hulick, K., Kaiser, P., Young, C., Verzwyvelt, V., Cheng, X., Shepherd, M., Orbovic, R., Fedullo, S., Majcher, C., DiMarco, S. and Stasiak, J. (2022) ‘Novel multi jet fusion 3D-printed patient immobilization for radiation therapy’, Journal of Applied Clinical Medical Physics, n/a(n/a), e13773, available: http://dx.doi.org/10.1002/acm2.13773.CrossRefGoogle Scholar
Scarmoncin, A., Portelli, C., Osorio, F. and Eckerlein, G. (2022) ‘Unfolding innovation lab services in public hospitals: a hospital FabLab case study’, in IEEE 28th International Conference on Engineering, Technology and Innovation (ICE/ITMC) and 31st International Association For Management of Technology (IAMOT), Nancy, France, 2022-06-19.CrossRefGoogle Scholar
Serrano, C., Fontenay, S., van den Brink, H., Pineau, J., Prognon, P. and Martelli, N. (2020) ‘Evaluation of 3D printing costs in surgery: a systematic review’, International Journal of Technology Assessment in Health Care, 36(4), 349355, available: http://dx.doi.org/10.1017/S0266462320000331.CrossRefGoogle Scholar
Sheikh, A., Chepelev, L., Christensen, A.M., Mitsouras, D., Schwarz, B.A. and Rybicki, F.J. (2017) ‘Beginning and Developing a Radiology-Based In-Hospital 3D Printing Lab’ in Rybicki, F. J. and Grant, G. T., eds., 3D Printing in Medicine: A Practical Guide for Medical Professionals, Cham: Springer International Publishing, 3541.CrossRefGoogle Scholar
Svensson, P.O. and Hartmann, R.K. (2018) ‘Policies to promote user innovation: Makerspaces and clinician innovation in Swedish hospitals’, Research Policy, 47(1), 277288, available: http://dx.doi.org/10.1016/j.respol.2017.11.006.CrossRefGoogle Scholar
Urquhart, L., Petrakis, K., Hansen, J., Wodenhouse, A., Mariani, M., Lauer-Schmaltz, M. and Loudon, B. (2022) ‘Prototyping Approaches for Rehabilitation Devices: From Product Embodiment to Data Management’, Computer-Aided Design and Applications, 145157, available: http://dx.doi.org/10.14733/cadaps.2023.S6.145-157.CrossRefGoogle Scholar
Ye, Z., Dun, A., Jiang, H., Nie, C., Zhao, S., Wang, T. and Zhai, J. (2020) ‘The role of 3D printed models in the teaching of human anatomy: a systematic review and meta-analysis’, BMC Medical Education, 20(1), 335, available: http://dx.doi.org/10.1186/s12909-020-02242-x.CrossRefGoogle ScholarPubMed
Zheng, Y.-x., Yu, D.-f., Zhao, J.-g., Wu, Y.-l. and Zheng, B. (2016) ‘3D Printout Models vs. 3D-Rendered Images: Which Is Better for Preoperative Planning?’, Journal of Surgical Education, 73(3), 518523, available: http://dx.doi.org/10.1016/j.jsurg.2016.01.003.CrossRefGoogle ScholarPubMed