Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-31T06:23:33.071Z Has data issue: false hasContentIssue false

DERIVATION OF MOTIVATORS FOR THE USE OF ALUMINUM FOAM SANDWICH AND ADVANTAGEOUS APPLICATIONS

Published online by Cambridge University Press:  27 July 2021

Patrick Hommel*
Affiliation:
University of Stuttgart
Daniel Roth
Affiliation:
University of Stuttgart
Hansgeorg Binz
Affiliation:
University of Stuttgart
*
Hommel, Patrick, University of Stuttgart, Institute for Engineering Design and Industrial Design, Germany, patrick.hommel@iktd.uni-stuttgart.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Aluminum foam sandwich (AFS) is an innovative material combination for designing lighter products and has many advantages such as a high bending stiffness at a low density and good energy absorption properties. Although the material is ready for series production, the number of industrial applications is low because of the high costs of the material, a lack of design knowledge and missing reference applications. This paper focuses on the aspect of missing reference applications and how to improve this situation in order to give designers an idea of where the material could be used profitably and to provide the basis for a selection method. Therefore, a systematic literature review is carried out to identify profitable applications with their respective advantages. As a main result, a set of motivators for the use of aluminum foam sandwich is developed, which will support the designer in evaluating the potential use of aluminum foam sandwich.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Aggogeri, F., Borboni, A., Merlo, A., Pellegrini, N. and Ricatto, R. (2017), “Vibration Damping Analysis of Lightweight Structures in Machine Tools”, Materials, Vol. 10. https://doi.org/10.3390/ma10030297CrossRefGoogle ScholarPubMed
Ahmad, Z. and Thambiratnam, D.P. (2009), “Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading”, Computers and Structures, Vol 87, pp.186197.CrossRefGoogle Scholar
Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.G. (2000), Metal Foams: A Design Guide, Butterworth-Heinemann, Woburn, Massachusetts. https://doi.org/10.1016/B978-0-7506-7219-1.X5000-4Google Scholar
Baiocco, G., Tagliaferri, V. and Ucciardello, N. (2017), “Neural Networks Implementation for Analysis and Control of Heat Exchange Process in a Metal Foam Prototypal Device”, 10th CIRP Conference on Intelligent Computation in Manufacturing Engineering (ICME), Ischia, Italy, July 20-22, 2016, pp. 518522. https://doi.org/10.1016/j.procir.2016.06.035CrossRefGoogle Scholar
Banhart, J., Baumeister, J., Melzer, A., Seeliger, W. and Weber, M. (1998), “Aluminiumschaum-Leichtbaustrukturen für den Fahrzeugbau”, Werkstoffe im Automobilbau - Sonderausgabe ATZ, MTZ.Google Scholar
Banhart, J. (1999), “Offenporige Aluminiumschäume - Eigenschaften und Anwendungen (Properties and applications of open-pored metallic materials)”, Aluminium, Vol. 75.Google Scholar
Banhart, J. (2001), “Manufacture, characterisation and application of cellular metals and metal foams”, Progress in Materials Science, Vol. 46, pp. 559632. https://doi.org/10.1016/S0079-6425(00)00002-5CrossRefGoogle Scholar
Banhart, J. (2003), “Aluminum Foams: On the Road to Real Applications”, MRS Bulletin, Vol. 28, pp. 290295. https://doi.org/10.1557/mrs2003.83CrossRefGoogle Scholar
Banhart, J. and Seeliger, H.-W. (2008), “Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications”, Advanced Engineering Materials, Vol. 10. https://doi.org/10.1002/adem.200800091CrossRefGoogle Scholar
Banhart, J., García-Moreno, F., Heim, K. and Seeliger, H.-W. (2017), “Light-weighting in transportation and defence using aluminium foam sandwich structures”, International Symposium on Light Weighting for Defence, Aerospace and Transportation, Indian Institute of Metals, Goa, November 11, 2017.Google Scholar
Banhart, J. (2018), “Production of Metal Foams”, In: Beaumont, W.R. and Zweben, C.H. (Eds.), Comprehensive Composite Materials II, Vol. 4, pp. 347363. https://doi.org/10.1016/B978-0-12-803581-8.09976-8CrossRefGoogle Scholar
Baroutaji, A., Gilchrist, M.D., Smyth, D. and Olabi, A.G. (2015), “Analysis and optimization of sandwich tubes energy absorbers under lateral loading”, International Journal of Impact Engineering, Vol. 82, pp. 7488. http://doi.org/10.1016/j.ijimpeng.2015.01.005CrossRefGoogle Scholar
Bauer, B., Kralj, S. and Bušić, M. (2013), “Production and Application of Metal Foams in Casting Technology”, Tehnički Vjesnik, Vol. 20, pp. 10951102.Google Scholar
Baumeister, J., Banhart, J. and Weber, M. (1994), Verfahren zur Herstellung eines metallischen Verbundwerkstoffs (Process for manufacturing metallic composite materials). German Patent DE 4426627.Google Scholar
Baumeister, J., Banhart, H. and Weber, M. (1995), “Hocheffiziente Energieabsorber aus Aluminiumschaum (Highly efficient energy absorbers made of aluminium foam)”, VDI Berichte, No. 1235.Google Scholar
Baumeister, J. (1999), “Production technology for aluminium foam/steel sandwiches”, In: Banhart, J., Ashby, M.F., Fleck, N.A. (Eds.), Metal Foams and Porous Metal Structures. Bremen: MIT Verlag, pp. 113118.Google Scholar
Baumeister, J., Rausch, G., Stöbener, K., Lehmhus, D. and Busse, M. (2007), “Verbundwerkstoffe mit Aluminiumschaum - Anwendungen im Schienenfahrzeugbau”, Materialwissenschaft und Werkstofftechnik, Vol. 38, No. 11, pp. 939942. https://doi.org/10.1002/mawe.200700180CrossRefGoogle Scholar
Baumeister, J., Weise, J., Hirtz, E., Höhne, K. and Hohe, J. (2014), “Applications of aluminum hybrid foam sandwiches in battery housings for electric vehicles”, 8th International Conference on Porous Metals and Metallic Foams, Raleigh, North Carolina, pp. 317321. https://doi.org/10.1016/j.mspro.2014.07.565CrossRefGoogle Scholar
Binz, H., Honold, C., Laufer, F., Hommel, P., Roth, D., Bauernhansl, T. and Schuster, M. (2018), “Konstruktion und Herstellung eines Auslegers aus Aluminiumschaum-Sandwich unter Anwendung der Fräskanttechnik”, Konstruktion, No. 07-08/2018, pp. 7882.CrossRefGoogle Scholar
Blessing, L.T.M. and Chakrabarti, A. (2009), DRM, a Design Research Methodology, Springer, London. https://doi.org/10.1007/978-1-84882-587-1CrossRefGoogle Scholar
Bornstein, H. and Ackland, K. (2013), “Evaluation of energy absorbing materials under blast loading”, Transactions on Engineering Sciences, Vol. 77, pp. 125136. https://doi.org/10.2495/MC130111CrossRefGoogle Scholar
Borosova, L., Liptai, P., Moravec, M., Fedak, G., Konkoly, T. and Lukacova, K. (2015), “The analysis of choosen acoustic descriptors of sandwich absorbers on the aluminum foam base”, International Journal of Engineering, pp. 189194.Google Scholar
Boomsma, K., Poulikakos, D. and Zwick, F. (2003), “Metal foams as compact high performance heat exchangers”, Mechanics of Materials, Vol. 35, pp. 11611176. https://doi.org/10.1016/j.mechmat.2003.02.001CrossRefGoogle Scholar
Chen, S., Bourham, M. and Rabiei, A. (2014), “Applications of open-cell and closed-cell metal foams for radiation shielding”, 8th International Conference on Porous Metals and Metallic Foams, Raleigh, North Carolina, pp. 293298. https://doi.org/10.1016/j.mspro.2014.07.560CrossRefGoogle Scholar
Claar, T.D., Yu, C.-J., Hall, I., Banhart, J., Baumeister, J. and Seeliger, W. (2000), “Ultra-lightweight Aluminum Foam Materials for Automotive Applications”, SAE 2000 World Congress, Detroit, March 6-9, 2000.CrossRefGoogle Scholar
Crupi, V., Epasto, G. and Guglielmino, E. (2011), “Impact Response of Aluminum Foam Sandwiches for Light-Weight Ship Structures”, Metals, Vol. 1, pp. 98112. https://doi.org/10.3390/met1010098CrossRefGoogle Scholar
Djamaluddin, F., Abdullah, S., Ariffin, A.K. and Nopiah, Z.M. (2016), “Finite Element Analysis and Crashworthiness Optimization of Foam-filled Double Circular under Oblique Loading”, Latin American Journal of Solids and Structures, Vol.13, No. 11, pp. 98112. http://doi.org/10.1590/1679-78252844CrossRefGoogle Scholar
Epasto, G., Distefano, F., Gu, L., Mozafari, H. and Linul, E. (2020), “Design and optimization of Metallic Foam Shell protective device against flying ballast impact damage in railway axles”, Materials and Design, Vol.196. https://doi.org/10.1016/j.matdes.2020.109120CrossRefGoogle Scholar
Fernandez-Morales, P., Nieto, C., Patiño, C., Lopez, J.P., Tamayo, D., Mendoza, E. and Giraldo, M. (2014), “A conceptual design of energy exchange system for recovery of residual heat using aluminum foams”, 8th International Conference on Porous Metals and Metallic Foams, Raleigh, North Carolina, pp. 371376.CrossRefGoogle Scholar
Gama, B.A., Bogetti, T.A., Fink, B.K., Yu, C.-J., Claar, T.D., Eifert, H.H. and Gillespie, J.W. Jr. (2001), “Aluminum foam integral armor: a new dimension in armor design”, Composite Structures, Vol. 52, pp. 381395. https://doi.org/10.1016/S0263-8223(01)00029-0CrossRefGoogle Scholar
García-Moreno, F. (2016), “Commercial Applications of Metal Foams: Their Properties and Production”, Materials, Vol. 9, No. 85. https://doi.org/10.3390/ma9020085CrossRefGoogle Scholar
Hackert, A., Müller, S. and Kroll, L. (2017), “Leichtbau-Radscheibe aus Carbon-Aluschaum-Sandwich”, Lightweight Design, No. 10, pp. 1014. https://doi.org/10.1007/s35725-016-0076-yCrossRefGoogle Scholar
Havel metal foam GmbH (2019), Batteriegehäuse der Zukunft aus Aluminiumschaum für die Automobilindustrie. [online]. Available at: https://havel-mf.com/unternehmen/downloads?file=files/bilder/3%20Unternehmen/6%20Downloads/D_20190815_HMF_Batterie-Geha%CC%88use.pdf (accessed 12.11.2020).Google Scholar
Havel metal foam GmbH (2020), Industry solutions. [online]. Available at: https://en.havel-mf.com/Industrysolutions (accessed 23.11.2020).Google Scholar
Hipke, T. and Wunderlich, T. (2000), “Chancen und Hemmnisse für den Metallschaumeinsatz”, Materialwissenschaft und Werkstofftechnik, Vol. 31, No. 6, pp. 396399. https://doi.org/10.1002/1521-4052(200006)31:6<396::AID-MAWE396>3.0.CO;2-43.0.CO;2-4>CrossRefGoogle Scholar
Hipke, T., Lange, G. and Poss, R. (2007), Taschenbuch für Aluminiumschäume, Aluminium-Verlag, Düsseldorf.Google Scholar
Hipke, T., Hohlfeld, J. and Rybandt, S. (2014), “Functionally aluminum foam composites for building industry”, 8th International Conference on Porous Metals and Metallic Foams, Raleigh, North Carolina, pp. 133138. https://doi.org/10.1016/j.mspro.2014.07.550CrossRefGoogle Scholar
Höfler, D., Priebsch, H.H., Rust, A. and Brandl, F.K. (2006), “Geräuschreduktion von Motorbauteilen durch hoch dämpfende Werkstoffe”, Motortechnische Zeitschrift (MTZ), No. 67, pp. 860868. https://doi.org/10.1007/BF03225426CrossRefGoogle Scholar
Hohlfeld, J., Ketzscher, R., Drebenstedt, C. and Lies, C. (2015), Entwicklung einer Triebkopfkabine aus Aluminiumschaum-Halbzeugen für Hochgeschwindigkeitszüge.Google Scholar
Hommel, P., Roth, D. and Binz, H. (2020), “Deficits in the application of aluminum foam sandwich: An industrial perspective”, 16th International Design Conference, October 26-29, 2020, Cambridge University Press, pp. 927936. https://doi.org/10.1017/dsd.2020.13Google Scholar
Huisseune, H., Jaeger, P., Schlampheleire, S., Ameel, D. and Paepe, M. (2014), “Simulation of an aluminum foam heat exchanger using the volume averaging technique”, 8th International Conference on Porous Metals and Metallic Foams, Raleigh, North Carolina, pp. 353358. https://doi.org/10.1016/j.mspro.2014.07.572CrossRefGoogle Scholar
Khateeb, S.A., Farid, M.M., Selman, J.R. and Al-Hallaj, S. (2004), “Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter”, Journal of Power Sources, Vol. 128, pp. 292307. https://doi.org/10.1016/j.jpowsour.2003.09.070CrossRefGoogle Scholar
Klan, S., Kniewallner, L., Philipp, S. and Weid, D. (2007), “Aluminiumschaum zur Verbesserung der Akustik und des Crashverhaltens”, Motortechnische Zeitschrift (MTZ), No. 68, pp. 960964. https://doi.org/10.1007/BF03227445CrossRefGoogle Scholar
Knuth, L. (2015), “Recyclingfähiges Material für den Leichtbau”, Lightweight Design, No. 8, pp. 2025. https://doi.org/10.1007/s35725-015-0013-5CrossRefGoogle Scholar
LaJeunesse, J. (2015), Implications of heterogeneity in the shock wave propagation of dynamically shocked materials, Master's Thesis, Marquette University, Milwaukee, Wisconsin.Google Scholar
Lantz, L., Maynez, J., Cook, W. and Wilson, C.M.D. (2016), “Blast Protection of Unreinforced Masonry Walls: A State-of-the-Art Review”, Advances in Civil Engineering, Vol. 2016. http://doi.org/10.1155/2016/8958429CrossRefGoogle Scholar
Li, Z., Yu, Q., Zhao, X., Yu, M., Shi, P. and Yan, C. (2017a), “Crashworthiness and lightweight optimization to applied multiple materials and foam-filled front end structure of auto-body”, Advances in Mechanical Engineering, Vol. 9, pp. 121. https://doi.org/10.1177/1687814017702806Google Scholar
Li, Z., Jiang, B. and Lu, F. (2017b), “Dynamic crushing of cellular materials with temperature gradient”, 11th International Symposium on Plasticity and Impact Mechanics (Implast), December 11 - 14, 2016, New Delhi, India, pp. 19921999. https://doi.org/10.1016/j.proeng.2017.05.145CrossRefGoogle Scholar
Maine, E.M.A. and Ashby, M.F. (2002), “Applying the investment methodology for materials (IMM) to aluminium foams”, Materials and Design, Vol. 23, pp. 307319.CrossRefGoogle Scholar
Navacerrada, M.A., Fernández, P., Díaz, C. and Pedrero, A. (2013), “Thermal and acoustic properties of aluminium foams manufactured by the infiltration process”, Applied Acoustics, Vol. 74, pp. 496501. http://doi.org/10.1016/j.apacoust.2012.10.006CrossRefGoogle Scholar
Noh, J.S., Lee, K.B. and Lee, C.G. (2006), “Pressure loss and forced convective heat transfer in an annulus filled with aluminum foam”, International Communications in Heat and Mass Transfer, Vol. 33, pp. 434444. https://doi.org/10.1016/j.icheatmasstransfer.2005.11.003CrossRefGoogle Scholar
Odabaee, M., Mancin, S. and Hooman, K. (2013), “Metal foam heat exchangers for thermal management of fuel cell systems – An experimental study”, Experimental Thermal and Fluid Science, pp. 214219. http://doi.org/10.1016/j.expthermflusci.2013.07.016CrossRefGoogle Scholar
Orovčík, L., Nosko, M., Kováčik, J., Dvorák, T., Štĕpánek, M. and Simančík, F. (2016), “Effects of chemical composition on the pore structure and heat treatment on the deformation of PM aluminium foams 6061 and 7075”, Metallic Materials, Vol. 54, No. 6, pp. 463470. https://doi.org/10.4149/km_2016_6_463CrossRefGoogle Scholar
Qi, C., Yang, S., Yang, L.-J., Han, S.-H. and Lu, Z.-H. (2014), “Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading”, The Scientific World Journal, Vol. 2014.CrossRefGoogle ScholarPubMed
Reglero, J.A., Solórzano, E., Rodríguez-Pérez, M.A., de Saja, J.A. and Porras, E. (2010), “Design and testing of an energy absorber prototype based on aluminium foams”, Materials and Design, Vol. 31, pp. 35683573. https://doi.org/10.1016/j.matdes.2010.02.025CrossRefGoogle Scholar
Reglero, J.A., Rodríguez-Pérez, M.A., Solórzano, E., and de Saja, J.A. (2011), “Aluminium foams as a filler for leading edges: Improvements in the mechanical behaviour under bird strike impact tests”, Materials and Design, Vol. 32, pp. 907910. https://doi.org/10.1016/j.matdes.2010.08.035CrossRefGoogle Scholar
Rodríguez-Méndez, F., Meneses-Guzmán, M. and Chinè-Polito, B. (2019), “Behavior of an aluminum foam as an attenuator of electromagnetic radiation”, Tecnologia en Marcha, Vol. 32, pp. 717. https://doi.org/10.18845/tm.v32i5.4166Google Scholar
Rossi, S., Bergamo, L. and Fontanari, V. (2017), “Fire resistance and mechanical properties of enamelled aluminium foam”, Materials and Design, Vol. 132, pp. 129137. https://doi.org/10.1016/j.matdes.2017.06.064CrossRefGoogle Scholar
Sampath, V., Rao, C.L. and Reddy, S. (2017), “Energy Absorption of Foam Filled Aluminum Tubes under Dynamic Bending”, International Conference on Sustainable Materials Processing and Manufacturing (SMPM), January 23–25, 2017, Kruger National Park, South Africa, pp. 225233. https://doi.org/10.1016/j.promfg.2016.12.054CrossRefGoogle Scholar
Schampheleire, S., Jaeger, P., Huisseune, H., Ameel, B., T'Joen, C., Kerpel, K. and Paepe, M. (2013), “Thermal hydraulic performance of 10 PPI aluminium foam as alternative for louvered fins in an HVAC heat exchanger”, Applied Thermal Engineering, Vol. 51, pp. 371382. http://doi.org/10.1016/j.applthermaleng.2012.09.027CrossRefGoogle Scholar
Schmerler, R., Gebken, T., Kalka, S. and Reincke, T. (2017), “Funktionsintegriertes Batteriegehäuse für Elektrofahrzeuge”, Lightweight Design, No. 5/2017, pp. 3237. https://doi.org/10.1007/s35725-017-0047-yCrossRefGoogle Scholar
Schultz, O. and Schindler, R. (2000), “Aluminiumschaum: Dynamische Festigkeit und Anwendung im Hubschrauber”, Materialwissenschaft und Werkstofftechnik, Vol. 31, pp. 511514.3.0.CO;2-B>CrossRefGoogle Scholar
Schwingel, D., Seeliger, H.-W., Vecchionacci, C., Alwes, D. and Dittrich, J. (2007), “Aluminium foam sandwich structures for space applications”, Acta Astronautica, Vol. 61, pp. 326330. https://doi.org/10.1016/j.actaastro.2007.01.022CrossRefGoogle Scholar
Seeliger, H.-W. (1999), “Application Strategies for Aluminum-Foam-Sandwich Parts (AFS)”, In: Banhart, J., Ashby, M.F., Fleck, N.A. (Eds.), Metal Foams and Porous Metal Structures, pp. 2936.Google Scholar
Seeliger, H.-W. (2004), “Aluminium Foam Sandwich (AFS) Ready for Market Introduction”, Advanced Engineering Materials, Vol. 6, No. 6, pp. 448451. https://doi.org/10.1002/adem.200405140CrossRefGoogle Scholar
Seeliger, H.-W. (2011), “AFS-Weiterentwicklung erreicht Serienreife: Aluminiumschaum frisch vom Band”, Aluminium Kurier News, No. 03/2011, p. 16.Google Scholar
Setiawan, R., and Salim, M.R. (2017), “Crashworthiness Design for an Electric City Car against Side Pole Impact”, Journal of Engineering and Technological Sciences, Vol. 49, pp. 587603. http://doi.org/10.5614%2Fj.eng.technol.sci.2017.49.5.3CrossRefGoogle Scholar
Simon, M. (2015), “Experimental research regarding rigidity improvement of hollow machine tools structures using aluminum foam”, 8th International Conference Interdisciplinarity in Engineering (INTER-ENG), October 9-10, 2014, Tirgu-Mures, Romania, pp. 228232. https://doi.org/10.1016/j.protcy.2015.02.033CrossRefGoogle Scholar
Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W. and Arwade, S.R. (2012), “Steel foam for structures: A review of applications, manufacturing and material properties”, Journal of Constructional Steel Research, Vol. 71, pp.110. https://doi.org/10.1016/j.jcsr.2011.10.028CrossRefGoogle Scholar
Smith, R.M. (2015), Experimental Testing of Aluminum Foam Filled Stainless Steel Braided Tubes Subjected to Transverse Impact, Master's Thesis, University of Windsor, Ontario, Canada.Google Scholar
Sviridov, A. (2011), Leichtbau mit Aluminiumschaumsandwich: Prozessketten zur Herstellung von Bauteilen, PhD Thesis, Brandenburg University of Technology Cottbus.Google Scholar
Tanaka, S., Hokamoto, K., Irie, S., Okano, T., Ren, Z., Vesenjak, M. and Itoh, S. (2011), “High-velocity impact experiment of aluminum foam sample using powder gun”, Measurement, Vol. 44, pp. 21852189. https://doi.org/10.1016/j.measurement.2011.07.018CrossRefGoogle Scholar
Vicaria, I., Crespo, I., Plaza, L.M., Caballero, P. and Idoiaga, I.K. (2016), “Aluminium Foam and Magnesium Compound Casting Produced by High-Pressure Die Casting”, Metals, Vol. 6. https://doi.org/10.3390/met6010024Google Scholar
Wang, X., He, W. and Zhao, L. (2020), “Interval Identification of Thermal Parameters Using Trigonometric Series Surrogate Model and Unbiased Estimation Method”, Applied Sciences, Vol. 10. https://doi.org/10.3390/app10041429Google Scholar
Wellnitz, J. (2011), “Aluminiumschaum für hohe Dauerfestigkeit und Ermüdungsbelastung”, Lightweight Design, No. 4, pp. 2831. https://doi.org/10.1365/s35725-011-0017-8CrossRefGoogle Scholar
Zhang, X., Jia, G. and Huang, H. (2011), “Numerical Investigation of Aluminum Foam Shield Based on Fractal Theory and Node-separation FEM”, Chinese Journal of Aeronautics, Vol. 24, pp. 734740. https://doi.org/10.1016/S1000-9361(11)60086-1CrossRefGoogle Scholar