Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-12T15:52:04.022Z Has data issue: false hasContentIssue false

Infinitesimally Moebius bendable hypersurfaces

Published online by Cambridge University Press:  11 January 2024

M.I. Jimenez
Affiliation:
Departamento de Matemática, Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação, Av. Trabalhador São Carlense 400, 13566-590 São Carlos, Brazil (mibieta@icmc.usp.br; tojeiro@icmc.usp.br)
R. Tojeiro
Affiliation:
Departamento de Matemática, Universidade de São Paulo, Instituto de Ciências Matemáticas e de Computação, Av. Trabalhador São Carlense 400, 13566-590 São Carlos, Brazil (mibieta@icmc.usp.br; tojeiro@icmc.usp.br)

Abstract

Li, Ma and Wang have provided in [13] a partial classification of the so-called Moebius deformable hypersurfaces, that is, the umbilic-free Euclidean hypersurfaces $f\colon M^n\to \mathbb{R}^{n+1}$ that admit non-trivial deformations preserving the Moebius metric. For $n\geq 5$, the classification was completed by the authors in [12]. In this article we obtain an infinitesimal version of that classification. Namely, we introduce the notion of an infinitesimal Moebius variation of an umbilic-free immersion $f\colon M^n\to \mathbb{R}^m$ into Euclidean space as a one-parameter family of immersions $f_t\colon M^n\to \mathbb{R}^m$, with $t\in (-\epsilon, \epsilon)$ and $f_0=f$, such that the Moebius metrics determined by ft coincide up to the first order. Then we characterize isometric immersions $f\colon M^n\to \mathbb{R}^m$ of arbitrary codimension that admit a non-trivial infinitesimal Moebius variation among those that admit a non-trivial conformal infinitesimal variation, and use such characterization to classify the umbilic-free Euclidean hypersurfaces of dimension $n\geq 5$ that admit non-trivial infinitesimal Moebius variations.

MSC classification

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cartan, E., La déformation des hypersurfaces dans l’espace euclidien réel a n dimensions, Bull. Soc. Math. France 44 (1916), 6599.CrossRefGoogle Scholar
Cartan, E., La déformation des hypersurfaces dans l’espace conforme réel a $n\geq 5$ dimensions, Bull. Soc. Math. France 45 (1917), 57121.CrossRefGoogle Scholar
Dajczer, M., Florit, L. and Tojeiro, R., On deformable hypersurfaces in space forms, Ann. Mater. Pura Appl. 174(1) (1998), 361390.CrossRefGoogle Scholar
Dajczer, M., Florit, L. and Tojeiro, R., On a class of submanifolds carrying an extrinsic umbilic foliation, Israel J. Math. 125(1) (2001), 203220.CrossRefGoogle Scholar
Dajczer, M. and Jimenez, M.I, Conformal infinitesimal variations of submanifolds, Differ. Geom. Appl. 75 (2021), .CrossRefGoogle Scholar
Dajczer, M. and Jimenez, M.I, Infinitesimal variations of submanifolds, Ensaios Matemáticos 35 (2021), 1156.CrossRefGoogle Scholar
Dajczer, M., Jimenez, M.I. and Vlachos, T., Conformal infinitesimal variations of Euclidean hypersurfaces, Ann. Mater. Pura Appl. 201(2) (2022), 743768.CrossRefGoogle Scholar
Dajczer, M. and Tojeiro, R., On Cartan’s conformally deformable hypersurfaces, Michigan Math. J. 47(3) (2000), 529557.CrossRefGoogle Scholar
Dajczer, M. and Tojeiro, R., Submanifold Theory Beyond an introduction (Universitext. Springer, New York, 2019).CrossRefGoogle Scholar
Dajczer, M. and Vlachos, T., The infinitesimally bendable Euclidean hypersurfaces, Ann. Mat. Pura Appl. 196(6) (2017), 19611979.CrossRefGoogle Scholar
Jimenez, M.I. and Tojeiro, R., Infinitesimally Bonnet bendable hypersurfaces, J. Geom. Anal. 33(5) (2023), .CrossRefGoogle Scholar
Jimenez, M.I. and Tojeiro, R., On the Moebius deformable hypersurfaces, Rev. Matem. Iberoam (2023). doi:10.4171/RMI/1437.CrossRefGoogle Scholar
Li, T., Ma, X. and Wang, C., Deformations of hypersurfaces preserving the Möbius metric and a reduction theorem, Adv. Math. 256 (2014), 156205.CrossRefGoogle Scholar
Sbrana, U., Sulla deformazione infinitesima delle ipersuperficie, Ann. Mater. Pura Appl. 15 (1908), 329348.CrossRefGoogle Scholar
Sbrana, U., Sulle varietà ad n − 1 dimensioni deformabili nello spazio euclideo ad n dimensioni, Rend. Circ. Mat. Palermo 27 (1909), 145.CrossRefGoogle Scholar
Wang, C., Möbius geometry of submanifolds in Sn, Manuscripta Math. 96(4) (1998), 517534.CrossRefGoogle Scholar