Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-09T14:22:59.754Z Has data issue: false hasContentIssue false

Analysis of emission line spectra of active galaxies and fine classification for activity types

Published online by Cambridge University Press:  19 March 2024

A. M. Mickaelian*
Affiliation:
NAS RA Byurakan Astrophysical Observatory (BAO)
H. V. Abrahamyan
Affiliation:
NAS RA Byurakan Astrophysical Observatory (BAO)
G. M. Paronyan
Affiliation:
NAS RA Byurakan Astrophysical Observatory (BAO)
G. A. Mikayelyan
Affiliation:
NAS RA Byurakan Astrophysical Observatory (BAO)

Abstract

Using the SDSS spectroscopy, we have carried out fine optical spectral classification for activity types for 710 AGN candidates. These objects come from a larger sample of some 2,500 candidate AGN using pre-selection by various samples; bright objects of the Catalog of Quasars and Active Galactic Nuclei, AGN candidates among X-ray sources, optically variable radio sources, IRAS extragalactic objects, etc. A number of papers have been published with the results of this spectral classification. More than 800 QSOs have been identified and classified, including 710 QSOs, Seyferts and Composites. The fine classification shows that many QSOs show the same features as Seyferts, i.e., subtypes between S1 and S2 (S1.2, S1.5, S1.8 and S1.9). We have introduced subtypes for the QSOs: QSO1.2, QSO1.5, QSO1.8, QSO1.9, though the last subtype does not appear in SDSS wavelength range due to mostly highly redshifted Hα (the main line for identification of the 1.9 subtype). Thus, independent of the luminosity (which serves as a separator between QSOs and Seyferts), AGN show the same features. We also have classified many objects as Composites, spectra having composite characteristics between Sy and LINERs, Sy and HII or LINERs and HII; in some cases all three characteristics appear together resulting as Sy/LINER/HII subtype. The QSOs subtypes together with Seyfert ones allow to follow AGN properties along larger redshift range expanding our knowledge on the evolution of AGN to more distant Universe represented by QSOs.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahamyan, H. V. 2020, Astronomische Nachrichten, 341, 703 CrossRefGoogle Scholar
Abrahamyan, H. V.; Mickaelian, A. M.; Paronyan, G. M.; Mikayelyan, G. A.; Gyulzadyan, M. V. 2018a, Astronomy and Computing, 25, 176 Google Scholar
Abrahamyan, H. V.; Mickaelian, A. M.; Mikayelyan, G. A.; Paronyan, G. M. 2018b, Communications of the Byurakan Astrophysical Observatory, 65, 1 CrossRefGoogle Scholar
Abrahamyan, H. V.; Mickaelian, A. M.; Paronyan, G. M.; Mikayelyan, G. A.; Gyulzadyan, M. V. 2019a, Communications of the Byurakan Astrophysical Observatory, 66, 1 CrossRefGoogle Scholar
Abrahamyan, H. V.; Mickaelian, A. M.; Paronyan, G. M.; Mikayelyan, G. A. 2019b, Astronomische Nachrichten, 340, 437 Google Scholar
Abrahamyan, H. V.; Mickaelian, A. M.; Paronyan, G. M.; Mikayelyan, G. A. 2020, Astrophysics, 63, 322 CrossRefGoogle Scholar
Baldwin, J. A.; Phillips, M. M.; Terlevich, R. 1981, PASP 93, 5 CrossRefGoogle Scholar
Gavrilovic, N.; Mickaelian, A.; Petit, C.; Popovic, L.C.; Prugniel, P. 2007, in Karas, V., Matt, G., eds, Vol. 238, Black Holes from Stars to Galaxies – Across the Range of Masses. pp 371372, doi:10.1017/S1743921307005509 CrossRefGoogle Scholar
HyperLEDA 2007, activity classifications, http://leda.univ-lyon1.fr/a109/index.html Google Scholar
Kewley, L. J.; Groves, B.; Kauffmann, G.; Heckman, T. 2006, MNRAS 372, 961 CrossRefGoogle Scholar
Mickaelian, A. M. 2015, Iranian Journal of Astronomy and Astrophysics, 2, 1 Google Scholar
Mickaelian, A. M.; et al. 2007, A&A 464, 1177 CrossRefGoogle Scholar
Mickaelian, A. M.; Mikayelyan, G. A.; Sinamyan, P. K. 2011, MNRAS 415, 1061 CrossRefGoogle Scholar
Mickaelian, A. M.; Harutyunyan, G. S.; Sarkissian, A. 2018, Astronomy Letters 44, 351 CrossRefGoogle Scholar
Mickaelian, A. M.; Abrahamyan, H. V.; Paronyan, G. M.; Mikayelyan, G. A. 2021, Frontiers in Astronomy and Space Sciences 7, 82 CrossRefGoogle Scholar
Mikayelyan, G. A.; Mickaelian, A. M.; Abrahamyan, H. V.; Paronyan, G. M.; Gyulzadyan, M. V. 2019, Astrophysics, 62, 452 CrossRefGoogle Scholar
Osterbrock, D. E. 1980, in Ninth Texas Symposium on Relativistic Astrophysics. pp 2238, doi: 10.1111/j.1749-6632.1980.tb15916.xCrossRefGoogle Scholar
Osterbrock, D. E. 1981, AJ 249, 462 CrossRefGoogle Scholar
Paronyan, G. M.; Mickaelian, A. M.; Harutyunyan, G. S.; Abrahamyan, H. V.; Mikayelyan, G. A. 2019, Astrophysics, 62, 147 CrossRefGoogle Scholar
Paronyan, G. M.; Mickaelian, A. M.; Abrahamyan, H. V.; Mikayelyan, G. A. 2020, Astrophysics, 63, 166 Google Scholar
Reines, A. E.; Greene, J. E.; Geha, M. 2013, AJ 775, 116 CrossRefGoogle Scholar
Veilleux, S.; Osterbrock, D. E. 1987, AJ Suppl. Ser., 63, 295 CrossRefGoogle Scholar
Veron-Cetty, M. P.; Veron, P. 2000, A&A Rev. 10, 81 Google Scholar
Veron-Cetty, M. P.; Veron, P. 2010, A&A 518, A10 CrossRefGoogle Scholar
Winkler, H. 1992, MNRAS 257, 677 10.1093/mnras/257.4.677CrossRefGoogle Scholar