Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-01T05:43:49.481Z Has data issue: false hasContentIssue false

Investigating the Magnetospheres of Rapidly Rotating B-type Stars

Published online by Cambridge University Press:  28 July 2017

C. L. Fletcher
Affiliation:
Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL, 32904, USA, cfletcher2013@my.fit.edu
V. Petit
Affiliation:
Department of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE 19716, USA
Y. Nazé
Affiliation:
FNRS GAPHE - STAR - Institut d’Astrophysique et de Géophysique (B5C), Université de Liège, Allée du 6 Août 19c, 4000-Liége, Belgium
G. A. Wade
Affiliation:
Department of Physics, Royal Military College of Canada, PO Box 17000 Station Forces, Kingston, ON, CanadaK7K 0C6
R. H. Townsend
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, 5534 Sterling Hall, 475 N Charter Street, Madison, WI 53706, USA
S. P. Owocki
Affiliation:
Department of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE 19716, USA
D. H. Cohen
Affiliation:
Department of Physics and Astronomy, Swarthmore College, 500 College Ave., Swarthmore, PA 19081, USA
A. David-Uraz
Affiliation:
Department of Physics and Astronomy, Bartol Research Institute, University of Delaware, Newark, DE 19716, USA
M. Shultz
Affiliation:
Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala 75120, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Babel, J. & Montmerle, T. 1997 A&A, 323, 121 Google Scholar
Cohen, D. H., de Messières, G. E., MacFarlane, J. J., Miller, N. A., Cassinell, J. P., Owocki, S. P., & Liedahl, D. A., 2003, ApJ, 586, 495 Google Scholar
Donati, J. F., Howarth, I. D., Jardine, M. M., Petit, P., Catala, C., Landstreet, J. D., Bouret, J.-C., Alecian, E., Barnes, J. R., Forveille, T., Paletou, F., & Manset, N., 2006, MNRAS, 370, 629 Google Scholar
Fossati, L., Castro, N., Schöler, M., Hubrig, S., Langer, N., Morel, T., Briquet, M., Herrero, A., Przybilla, N., Sana, H., Schneider, F. R. N., de Koter, A., & BOB Collaboration, 2015, A&A, 582, A45 Google Scholar
Nazé, Y., Petit, V., Rinbrand, M., Cohen, D., Owocki, S., ud-Doula, A., & Wade, G. A., 2014, ApJS, 215, 10 Google Scholar
Owocki, S. P., ud-Doula, A., Sundqvist, J. O., Petit, V., Cohen, D. H., & Townsend, R. H. D., 2016, MNRAS, 462, 3830 Google Scholar
Petit, V., Owocki, S. P., Wade, G. A., Cohen, D. H., Sundqvist, J. O., Gagné, M., Maíz Apellániz, J., Oksala, M. E., Bohlender, D. A., Rivinius, T., Henrichs, H. F., Alecian, E., Townsend, R. H. D., ud-Doula, A., & MiMeS Collaboration, 2013, MNRAS, 429, 398 CrossRefGoogle Scholar
Townsend, R. H. D. & Owocki, S. P., 2005, MNRAS, 357, 251 CrossRefGoogle Scholar
ud-Doula, A., Owocki, S., Townsend, R., Petit, V., & Cohen, D., 2014, MNRAS, 441, 3600 CrossRefGoogle Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D., 2009, MNRAS, 392, 1022 Google Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D. 2008, MNRAS, 385, 97 Google Scholar
ud-Doula, A. & Owocki, S. P., 2002, ApJ, 576, 413 Google Scholar
Wade, G. A., et al. 2016, MNRAS, 456, 2 Google Scholar