Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-03T00:32:45.635Z Has data issue: false hasContentIssue false

Magnetars are super hot and super cool

Published online by Cambridge University Press:  20 March 2013

Wynn C. G. Ho
Affiliation:
School of Mathematics, University of Southampton, Southampton, SO17 1BJ, UK email: wynnho@slac.stanford.edu
Kostas Glampedakis
Affiliation:
Departamento de Física, Universidad de Murcia, E-30100 Murcia, Spain
Nils Andersson
Affiliation:
School of Mathematics, University of Southampton, Southampton, SO17 1BJ, UK email: wynnho@slac.stanford.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We examine to what extent the inferred surface temperature of magnetars in quiescence can constrain the presence of a superfluid in the neutron star core and the role of magnetic field decay in the core. By performing detailed simulations of neutron star cooling, we show that extremely strong heating from field decay in the core cannot produce the high observed surface temperatures nor delay the onset of neutron superfluidity in the core. We find that it is not possible to conclude that magnetar cores are in a non-superfluid state purely from high surface temperatures. We find that neutron superfluidity in the core occurs less than a few hundred years after neutron star formation for core fields < 1016 G. Thus all known neutron stars, including magnetars, without a core containing exotic particles, should have a core of superfluid neutrons and superconducting protons.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Arras, P., Cumming, A., & Thompson, C. 2004, ApJ, 608, L49CrossRefGoogle Scholar
Chevalier, R. A. 2005, ApJ, 619, 839CrossRefGoogle Scholar
Dall'Osso, S., Shore, S. N., & Stella, L. 2009, MNRAS, 398, 1869Google Scholar
Glampedakis, K., Jones, D. I., & Samuelsson, L. 2011, MNRAS, 413, 2021CrossRefGoogle Scholar
Gnedin, O. Y., Yakovlev, D. G., & Potekhin, A. Y. 2001, MNRAS, 324, 725Google Scholar
Heinke, C. O. & Ho, W. C. G. 2010, ApJ, 719, L167Google Scholar
Ho, W. C. G. & Heinke, C. O. 2009, Nature, 462, 71Google Scholar
Ho, W. C. G., Glampedakis, K., & Andersson, N. 2012, MNRAS 422 2632 [erratum: 425, 1600]CrossRefGoogle Scholar
Kaminker, A. D., et al. 2006, MNRAS, 371, 477Google Scholar
Kaminker, A. D., et al. 2009, MNRAS, 395, 2257Google Scholar
Lattimer, J. M., et al. 1994, ApJ, 425, 802CrossRefGoogle Scholar
Mereghetti, S. 2008, A&A Rev., 15, 225Google Scholar
Page, D., Geppert, U., & Weber, F. 2006, Nucl. Phys. A, 777, 497CrossRefGoogle Scholar
Page, D., et al. 2011, Phys. Rev. Lett., 106, 081101Google Scholar
Shternin, P. S., et al. 2011, MNRAS, 412, L108CrossRefGoogle Scholar
Thompson, C. & Duncan, R. C. 1996, ApJ, 473, 322CrossRefGoogle Scholar
Woods, P. M. & Thompson, C. 2006, in: Lewin, W. H. G. & van der Klis, M. (eds.), Compact Stellar X-ray Sources (Cambridge: Cambridge University Press), p. 547Google Scholar
Yakovlev, D. G. & Pethick, C. J. 2004, ARA&A, 42, 169Google Scholar
Yakovlev, D. G., et al. 2008, in: Bassa, C. G., Wang, Z., Cumming, A., & Kaspi, V. M. (eds.), AIP Conf. Proc. Vol. 983, 40 Years of Pulsars (Melville: American Inst. Phys.), p. 379Google Scholar
Yakovlev, D. G., et al. 2011, MNRAS, 411, 1977Google Scholar