Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-27T08:31:53.890Z Has data issue: false hasContentIssue false

Interdependencies Within the System of Objectives of a Product Generation in Industrial Practice

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One challenge in product development is the megatrend of product individualization in the automotive supplier industry. Requirements for a variant by the customer may differ from those by the provider wherefore conflicting goals can arise. To cope with variant requests in the quotation phase systematically, a method to evaluate variants is necessary. Based on evaluation criteria the requirements from the stakeholders are valued. While evaluating, an already criterion can have an impact on assessing the remaining criteria. For this reason, the present investigation emphases the interdependencies between the evaluation criteria in industrial practice representing interdependencies within goals, requirements and boundary conditions in an early stage of product development. Analysing decisive factors supports to identify subsequent activities in the development process of a variant. Experts of an international automotive supplier developed impact matrices and a scenario technique tool is used to interpret the matrices. In context of the model of PGE - Product Generation Engineering, findings derive to ensure a comprehensive basis for decision-making concerning a variant-request.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Albers, A., Lohmeyer, Q. and Ebel, B. (2011), “Dimensions of objectives in interdisciplinary product development projects”, 18th International Conference on Engineering Design (ICED11), Copenhagen, Denmark.Google Scholar
Albers, A., Reiß, N., Bursac, N. and Richter, T. (2016a), “The integrated product engineering model (iPeM) in context of the product generation engineering”, 26th CIRP Design Conference, Stockholm, Sweden.Google Scholar
Albers, A., Bursac, N. and Rapp, S. (2016b), “PGE - Product generation engineering - Case study of the dual mass flywheel”, International Design Conference - Design 2016, Dubrovnik, Croatia.Google Scholar
Albers, A., Heitger, N., Haug, F., Fahl, J., Hirschter, T. and Bursac, N. (2018), “Supporting Potential Innovation in the Early Phase of PGE - Product Generation Engineering: Structuring the Development of the Initial System of Objectives”, R&D Conference 2018, Milan, Italy.Google Scholar
Albers, A., Rapp, S., Peglow, N., Heimicke, J., Spadinger, M. and Wattenberg, F. (2019), “A Basis for Project Planning in PGE - Product Generation Engineering: Variations as Activity Patterns”, 30th CIRP Design Conference, Povoa de Varzim , Portugal, accepted.Google Scholar
Alfen, H.W., Bauer, T., Bodenmüller, E., Brezinski, H., Brömer, K., Grove, N., Güther, P., Jacob, D. and Oepen, R.-P. (2013), “Ökonomie des Baumarktes Grundlagen und Handlungspositionen: Zwischen Leistungsversprecher und Produktanbieter”, Bau, B. (ed.), Springer Vieweg.Google Scholar
Arnold, B. (2015), “Prognose von Schlüsselqualifikationen von IT-Serviceunternehmen. Ein umfeldorientierter Blick auf das Jahr 2015”, Picot, A., Reichwald, R., Franck, E. (eds.), Deutscher Universitäts-Verlag, Wiesbaden.Google Scholar
Fink, A. and Siebe, A. (2013), “Scenario-ManagerTM 2013 Quick Start”, ScMI (ed.).Google Scholar
Fink, A., Schlake, O. and Siebe, A. (2002), “Erfolg durch Szenario-Management: Prinzip und Werkzeuge der strategischen Vorausschau”, Campus Verlag, Frankfurt.Google Scholar
Gaßner, R. and Steinmüller, K. (2009), “Welche Zukunft wollen wir haben? Visionen, wie Forschung und Technik unser Leben verändern sollen”, WerkstattBericht Nr. Vol. 104, Institute for Future Studies and Technology Assessment (ed.), Berlin.Google Scholar
Gausemeier, J., Fink, A. and Schlake, O. (1996), “Szenario-Management Planen und Führen mit Szenarien”, Carl Hanser Verlag, München, Wien.Google Scholar
Heina, J. (1999), “Variantenmanagement Kosten-Nutzen-Bewertung zur Optimierung der Variantenvielfalt”, Gabler Edition Wissenschaft.Google Scholar
Jiang, B.C. and Hsu, C.-H. (2003), “Development of a fuzzy decision model for manufacturability evaluation”, Journal of Intelligent Manufacturing, Vol. 14.Google Scholar
Kersten, W. (2002), “Vielfaltsmanagement: Integrative Lösungsansätze zur Optimierung und Beherrschung der Produkte und Teilvielfalt”, Wildemann, H. (ed.), TCW-Report.Google Scholar
Kihlander, I. and Ritzen, S. (2009), “Deficiencies in Management of the Concept Development Process: Theory and Practice”, 17th International Conference on Engineering Design (ICED09), Palo Alto, USA.Google Scholar
Kühnapfel, J.B. (2014), “Nutzwertanalysen in Marketing und Vertrieb”, Springer Gabler, Wiesbaden.Google Scholar
Meboldt, M. (2008), “Mentale und formale Modellbildung in der Produktentstehung - als Beitrag zum integrierten Produktentstehungs-Modell (iPeM)”, Forschungsberichte, Albers, A. (ed.), Vol. 29, Universität Karlsruhe.Google Scholar
Peglow, N., Powelske, J., Birk, C., Albers, A. and Bursac, N. (2017), “Systematik zur Differenzierung von Varianten im Kontext der PGE – Produktgenerationsentwicklung”, Tagungsband 15. Gemeinsames Kolloquium Konstruktionstechnik, Düsseldorf, Germany.Google Scholar
Peglow, N., Heimicke, J. and Albers, A. (2019), “Agiler Bewertungsprozess in einer variantenreichen PGE - Produktgenerationsentwicklung”, Vol. 5. Stuttgarter Symposium für Produktentwicklung (SSP): Agilität und kognitives Engineering, Stuttgart, Germany, accepted.Google Scholar
Rathnow, P.J. (1993), “Integriertes Variantenmanagement: Bestimmung, Realisierung und Sicherung der optimalen Variantenvielfalt”, Vandenhoeck & Ruprecht.Google Scholar
Raubold, U. (2011), “Lebenszyklusmanagement in der Automobilindustrie Ein Optimierungsansatz auf Basis der auf den Lebenszyklus wirkenden Einflussfaktoren”, Specht, D. (ed.), Gabler.Google Scholar
Ropohl, G. (1975), “Einleitung in die Systemtechnik”, Carl Hanser Verlag, München, Wien.Google Scholar
Saaty, T.L. and Vargas, L.G. (2006), “Decision Making with the Analytic Network Process Economic, Political, Social and Technological Applications with Benefits, Opportunities, Costs and Risks”, Springer Science+Business Media.Google Scholar
Seram, N. (2013), “Decision Making in Product Development – A Review of the Literature”, International Journal of Engineering and Applied Sciences, Vol. 2 No. 4.Google Scholar
Walch, M. and Albers, A. (2014), “Entscheidungsunterstützung bei der kunden- und anbietergerechten Konzeptentwicklung im Rahmen der Angebotsdefinition in der Anpassungs- und Variantenkonstruktion”, Tagungsband, Vol. 12. Gemeinsames Kolloquium Konstruktionstechnik, Bayreuth, Germany.Google Scholar