Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-16T17:03:10.927Z Has data issue: false hasContentIssue false

Hardy type inequalities on closed manifolds via Ricci curvature

Published online by Cambridge University Press:  21 July 2020

Canjun Meng
Affiliation:
Department of Mathematics, East China University of Science and Technology, Shanghai200237, China (10173968@mail.ecust.edu.cn; 10172443@mail.ecust.edu.cn; szhao_wei@yahoo.com, wzhao@ecust.edu.cn)
Han Wang
Affiliation:
Department of Mathematics, East China University of Science and Technology, Shanghai200237, China (10173968@mail.ecust.edu.cn; 10172443@mail.ecust.edu.cn; szhao_wei@yahoo.com, wzhao@ecust.edu.cn)
Wei Zhao
Affiliation:
Department of Mathematics, East China University of Science and Technology, Shanghai200237, China (10173968@mail.ecust.edu.cn; 10172443@mail.ecust.edu.cn; szhao_wei@yahoo.com, wzhao@ecust.edu.cn)

Abstract

The article is devoted to Hardy type inequalities on closed manifolds. By means of various weighted Ricci curvatures, we establish several sharp Hardy type inequalities on closed weighted Riemannian manifolds. Our results complement in several aspects those obtained recently in the non-compact Riemannian setting.

Type
Research Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakry, D.. L'hypercontractivité et son utilisation en théorie des semigroupes 1992 Lecture Notes in Mathematics, vol. 1581, Lectures on probability theory Saint-Flour, pp. 1114 (Berlin: Springer, 1994).Google Scholar
Baras, P. and Cohen, L.. Complete blow-up after T max for the solution of a semilinear heat equation. J. Funct. Anal. 71 (1987), 142174.CrossRefGoogle Scholar
Berchio, E., Ganguly, D. and Grillo, G.. Sharp Poincaré–Hardy and Poincaré–Rellich inequalities on the hyperbolic space. J. Funct. Anal. 272 (2017), 16611703.CrossRefGoogle Scholar
Berezansky, Y. M., Sheftel, Z. G. and Us, G. F.. Functional analysis, vol. II (Basel: Birkhäuser Verlag, 1996).Google Scholar
Brezis, H. and Vázquez, J.-L.. Blow-up solutions of some nonlinear elliptic problems. Revista Mat. Univ. Complutense Madrid, 10 (1997), 443469.Google Scholar
Carron, G.. Inégalités de Hardy sur les variétés Riemanniennes non-compactes. J. Math. Pures Appl. 76 (1997), 883891.CrossRefGoogle Scholar
Cabré, X. and Martel, Y.. Existence versus explosion instantanée pour des équations de la chaleur linéaires avec potentiel singulier. C.R. Acad. Sci. Paris Ser. I Math. 329 (1999), 973978.CrossRefGoogle Scholar
Chavel, I.. Riemannian geometry: a modern introduction (Cambridge: Cambridge University, 1993).Google Scholar
D'Ambrosio, L.. Hardy-type inequalities related to degenerate elliptic differential operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV (2005), 451586.Google Scholar
D'Ambrosio, L. and Dipierro, S.. Hardy inequalities on Riemannian manifolds and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 449475.CrossRefGoogle Scholar
Davies, E.-B.. A review of Hardy inequalities. Oper. Theory Adv. Appl. 110 (1998), 5567.Google Scholar
Hardy, G., Pólya, G. and Littlewood, J. E.. Inequalities, 2nd edn (Cambridge: Cambridge University, 1952).Google Scholar
Hebey, E.. Sobolev spaces on Riemannian manifolds (Berlin: Springer, 1996).CrossRefGoogle Scholar
Kristály, A. and Repovš, D.. Quantitative Rellich inequalities on Finsler-Hardamard manifolds. Commun. Contemp. Math. 18 (2016), 17. DOI: 10.1142/S0219199716500206.CrossRefGoogle Scholar
Kristály, A. and Szakál, A.. Interpolation between Brezis–Vázquez, Poincaré inequalities on nonnegatively curved spaces: sharpness and rigidities. J. Differ. Eq. 266 (2019), 66216646.CrossRefGoogle Scholar
Kombe, I. and Özaydin, M.. Improved Hardy and Rellich inequalities on Riemannian manifolds. Trans. Amer. Math. Soc. 361 (2009), 61916203.CrossRefGoogle Scholar
Kombe, I. and Özaydin, M.. Hardy–Poincaré, Rellich and uncertainty principle inequalities on Riemannian manifolds. Trans. Amer. Math. Soc. 365 (2013), 50355050.CrossRefGoogle Scholar
Lieb, E.-H. and Loss, M.. Analysis, volume 14 of graduate studies in mathematics, 2nd edn (Providence, RI: AMS, 2001).Google Scholar
Limoncu, M.. The Bakry–Émery Ricci tensor and its applications to some compactness theorems Math. Z. 271 (2012), 715722.CrossRefGoogle Scholar
Lott, J. and Villani, C.. Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169 (2009), 903991.CrossRefGoogle Scholar
Ohta, S.. Finsler interpolation inequalities. Calc. Var. Partial Differ. Eq. 36 (2009), 211249.CrossRefGoogle Scholar
Ohta, S.. Optimal transport and Ricci curvature in Finsler geometry. Probabilistic approach to geometry, Adv. Stud. Pure Math., 57), pp. 323342 (Tokyo: Mathematical Society of Japan, 2010).Google Scholar
Pera, I. and Vázquez, J. L.. On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term. Arch. Rational Mech. Anal. 129 (1995), 201224.CrossRefGoogle Scholar
Strum, K. T.. On the geometry of metric measures spaces I. Acta Math. 196 (2006), 65131.CrossRefGoogle Scholar
Vazquez, J. L.. Domain of existence and blowup for the exponential reaction-diffusion equation. Indiana Univ. Math. J. 48 (1999), 677709.CrossRefGoogle Scholar
Vazque, J. L. and Zuazua, E.. The Hardy inequality and the asymptotic behavior of the heat equation with an inverse-square potential. J. Funct. Anal. 173 (2000), 103153.CrossRefGoogle Scholar
Wei, G. and Wylie, W.. Comparison geometry for the Bakry-Emery Ricci tensor. J. Differ. Geom. 83 (2009), 377406.CrossRefGoogle Scholar
Yang, Q., Su, D. and Kong, Y.. Hardy inequalities on Riemannian manifolds with negative curvature. Commun. Contemp. Math. 16 (2014), 24 p. https://doi.org/10.1142/S0219199713500430.CrossRefGoogle Scholar