Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-16T19:59:52.918Z Has data issue: false hasContentIssue false

Locally minimising solutions of − Δu = u(1 − |u|2) in R2

Published online by Cambridge University Press:  14 November 2011

Etienne Sandier
Affiliation:
Département de Mathématiques, Faculté des Sciences, Université Françoise Rabelais, Parc de Grandmont, 37200 Tours, France, E-mail: sandier@balzac.univ-tours.fr

Abstract

We prove that locally minimising solutions of − Δu = u(1 − |u|2) in R2, i.e. solutions that minimise the action in any bounded domain of R2, are such that ∫R2(1 − |u|2)2(x) dx < + ∞. We prove a similar property for locally minimising solutions in a half-plane.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bethuel, F., Brezis, H. and Hélein, F.. Asymptotics for the minimization of a Ginzburg-Landau functional. Calc. Var. Partial Differential Equations 1 (1993), 123–48.Google Scholar
2Bethuel, F., Brezis, H. and Hélein, F.. Ginzburg-Landau vortices (Boston: Birkhaüser, 1994).CrossRefGoogle Scholar
3Brezis, H., Merle, F. and Rivière, T.. Quantisation effects for − Δu = u(1 − |u|2) in R2 in R2. Arch. Rational Meek Anal. 126 (1994), 3558.Google Scholar
4Bethuel, F. and Riviere, T.. Vortices for a variational problem related to supra-conductivity. Ann. Inst. H. Poincarée, Anal. Non Linéaire 12 (1995), 243303.CrossRefGoogle Scholar
5Herve, R. M. and Hervé, M.. Quelques proprietes des solutions de l'équation de Ginzburg-Landau sur un ouvert de R2. Pot. Anal. 5 (1996), 591609.CrossRefGoogle Scholar
6Mironescu, P.. Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale. C. R. Acad. Sci. Paris, Sér. I Math. 323 (1996), 593–8.Google Scholar
7Shafrir, I.. A remark on solutions of − Δu = u(1 − |u|2) in R2 in R2. C. R. Acad. Sci. Paris, Sér. I Math. 318 (1994), 327–31.Google Scholar