Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-16T23:03:57.242Z Has data issue: false hasContentIssue false

On Sobolev type integral inequalities

Published online by Cambridge University Press:  14 November 2011

B. G. Pachpatte
Affiliation:
Department of Mathematics and Statistics, Marathwada UniversityAurangabad 431004, (Maharashtra), India

Synopsis

The aim of this paper is to establish some new integral inequalities of the Sobolev type involving functions of several independent variables. The analysis used in the proofs is elementary and the results established provide new estimates for this type of inequality.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Crooke, P. S.. On two inequalities of the Sobolev type. Applicable Anal. 3 (1974), 345358.CrossRefGoogle Scholar
2Delbosco, D.. Sur une inégalite de la norme. Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678–715 (1980), 206208.Google Scholar
3Friedman, A.. Partial Differential Equations (New York: Holt, Reinhart and Winston, 1969).Google Scholar
4Horgan, C. O.. Integral bounds for solutions of nonlinear reaction-diffusion equations. J. Appl. Math. Phys. (ZAMP) 28 (1977), 197204.CrossRefGoogle Scholar
5Horgan, C. O. and Nachlinger, P. R.. On the domain of attraction for steady states in heat conduction. Internat. J. Engrg. Sci. 14 (1976), 143148.CrossRefGoogle Scholar
6Horgan, C. O. and Wheeler, L. T.. Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow. SIAM J. Appl. Math. 35 (1978), 97116.CrossRefGoogle Scholar
7Ladyzhenskaya, O. A.. The mathematical theory of viscous incompressible flow (New York: Gordon and Breach, 1969).Google Scholar
8Ladyzhenskaya, O. A. and Uraltseva, N. N.. Linear and quasilinear elliptic equations (New York: Academic Press, 1969).Google Scholar
9Liberman, G. M.. Interior gradient bounds for non-uniformly parabolic equations. Indiana Univ. Math. J. 32 (1983), 579601.CrossRefGoogle Scholar
10Mitrinovi, D. S.ć. Analytic Inequalities (Berlin: Springer, 1970).CrossRefGoogle Scholar
11Nirenberg, L.. On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13 (1959), 116162.Google Scholar
12Pachpatte, B. G.. On Poinćare type integral inequalities. J. Math. Anal. Appl. 114 (1986) 111115.CrossRefGoogle Scholar
13Pachpatte, B. G.. On two inequalities of the Serrin type. J. Math. Anal. Appl. 115 (1986), to appear.Google Scholar
14Payne, L. E.. Uniqueness Criteria for steady state solutions of the Navier–Stokes equations. Simpos. Internaz. Appl. Anal. Fiz. Mat. (Cagliari–Sassari, 1964), pp. 130153 (Rome: Edizioni Cremonese, 1965).Google Scholar
15Serrin, J.. The initial value problem for the Navier–Stokes equations. In Nonlinear Problems (ed. Langer, R. E.) pp. 6978 (Madison: The University of Wisconsin Press, 1963).Google Scholar
16Talenti, G.. Best constants in Sobolev's inequality. Annali di Mat. Pura ed. Appl. (iv) 110 (1976), 353372.CrossRefGoogle Scholar