Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T20:18:59.876Z Has data issue: false hasContentIssue false

Soil changes in forest ecosystems: evidence for and probable causes

Published online by Cambridge University Press:  05 December 2011

Dale W. Johnson
Affiliation:
Desert Research Institute and Department of Range, Wildlife, and Forestry, University of Nevada, Reno, Nevada, U.S.A.
Malcolm S. Cresser
Affiliation:
Department of Soil Science, University of Aberdeen, Aberdeen., U. K.
S. Ingvar Nilsson
Affiliation:
Department of Ecology and Environmental Research, Swedish University of Agricultural Sciences, Uppsala, Sweden
John Turner
Affiliation:
Wood Technology and Forest Research Division, Forestry Commission of N.S.W., Sydney, N.S.W., Australia
Bernhard Ulrich
Affiliation:
Institut für Bodenkunde und Waldernährung, Göttingen, Federal Republic of Germany
Dan Binkley
Affiliation:
Forest Sciences, Colorado State University, Ft Collins, Colorado, U.S.A.
Dale W. Cole
Affiliation:
College of Forest Resources, University of Washington, Seattle, Washington, U.S.A.
Get access

Synopsis

A review of the literature on forest soil change in North America, Central Europe. Sweden, U.K., and Australia reveals that changes are occurring in both polluted and unpolluted sites at a greater rate than previously suspected. Acid deposition has played a major role in recent acidification in some areas of Europe and, to a more limited extent, in Sweden and eastern North America. However, rapid rates of soil acidification are occurring in western North America and Australia due to internal processes such as tree uptake and nitrification associated with excessive nitrogen fixation. The presence of extremely acid soils is not necessarily an indicator of significant acidic deposition, as evidenced by their presence in unpolluted, even pristine forests of the north-western U.S.A. and Alaska. Numerous studies in Sweden, Australia, and North America show the important effects of tree uptake and harvesting upon soil acidification in managed forests. Furthermore, arguments can be presented that harvesting takes a greater toll upon the pools of potentially limiting cations than leaching.

The rate at which soils are changing in some instances calls for a re-evaluation of the budget analyses used to predict soil change. Specifically, inter-horizon changes due to uptake and recycling by vegetation, the interactions of such changes with naturally- and anthropogenically-produced acids, and the effects of aluminium uptake and recycling need further evaluation and study.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alban, D. H. 1982. Effects of nutrient accumulation by aspen, spruce, and pine on soil properties. Soil Science Society of America Journal 46, 853–61.CrossRefGoogle Scholar
Amundson, R.G., & Tremback, B. 1989. Soil development on stabilized dunes in Golden Gate Park, San Francisco. Soil Science Society of America Journal 53, 1798–806.Google Scholar
Anderson, S. 1988. Long-term changes (1930–1932 to 1984) in the acid-base status of forest soils in the Adirondacks of New York. PhD thesis, University of Pennsylvania, Philadelphia.Google Scholar
Battarbee, R. W., Flower, R. J., Stevenson, A. C., & Rippey, B. 1985. Lake acidification in Galloway: A paleoecological test for competing hypotheses. Nature 314, 350–2.CrossRefGoogle Scholar
Bednall, B. H. 1968. The problem of lower volume associated with second rotation Pinus radiata plantations in South Australia. Proceedings, 9th Commonwealth Forestry Conference, 12 pp.Google Scholar
Berden, M., Nilsson, S. I., Rosen, K., & Tyler, G. 1987. Soil acidification: extent, causes and consequences. National Swedish Environmental Protection Board Report 3292.Google Scholar
Billet, M. F., Parker, Jervis F., Fitzpatrick, E. A., & Cresser, M. S. 1990a. Forest soil chemical changes between 1949/50 and 1987. Journal of Soil Science 41, 133–45.Google Scholar
Billet, M. F., Fitzpatrick, E. A., & Cresser, M. S. 1990b. Changes in the carbon and nitrogen status of forest soil organic horizons between 1949/50 and 1987. Environmental Pollution (in press).CrossRefGoogle Scholar
Binkley, D., & Richter, D. 1987. Nutrient cycles and H+ budgets of forest ecosystems. Advances in Ecological Research 16, 151.Google Scholar
Binkley, D., & Sollins, P. 1990. Factors determining differences in soil pH in adjacent conifer and alder-conifer stands. Soil Science Society of America Journal 54, 1427–33.CrossRefGoogle Scholar
Binkley, D., & Valentine, D. 1990. Fifty-year biogeochemical effects of green ash, white pine, and Norway spruce in a replicated experiment. Forest Ecology & Management (in press).Google Scholar
Binkley, D., Lousier, J. D., & Cromack, K. Jr., 1984. Ecosystem effects of Sitka alder in a Douglas-fir plantation. Forest Science 1, 2635.Google Scholar
Binkley, D., Valentine, D., Wells, C., & Valentine, U. 1989. An empirical model of the factors contributing to 20-yr decrease in soil pH in an old-field plantation of loblolly pine. Biogeochemistry 8, 3954.CrossRefGoogle Scholar
Bohn, H., McNeal, B., & O'Connor, G. 1985. Soil Chemistry (2nd Edn.). New York: John Wiley.Google Scholar
Bormann, B. T., & DeBell, D. S. 1981. Nitrogen content and other soil properties related to age of red alder stands. Soil Science Society of America, Journal 45, 428–32.CrossRefGoogle Scholar
Bosch, J. M., & Smith, R. E. 1989. The effect of afforestation of indigenous scrub forest with Eucalyptus on streamflow from a small catchment in the Transvaal, South Africa. South African Forestry Journal 150, 717.CrossRefGoogle Scholar
Brand, D., Kehoe, P., & Connors, M. 1986. Coniferous afforestation leads to soil acidification in central Ontario. Canadian Journal of Forest Research 16, 1389–91.Google Scholar
Bredemeier, M. 1989. Nature and potential of ecosystem-internal acidification processes in relation to acid deposition. In Acid Deposition, pp. 197212, ed. Longhurst, J. W. S.. London: British Library Technical Communications.Google Scholar
Bringmark, L. 1977. A bioelement sudget of an old Scots pine forest in central Sweden. Silva Fennica 11, 201–9.Google Scholar
Bredemeier, M. 1980. Ion leaching through a podsol in a Scots pine stand. In Persson, T. P. (ed.) Structure and Function of Northern Coniferous Forests – An Ecosystems Study. Ecological Bulletins (Stockholm) 32, 341–61.Google Scholar
Burch, G. J., Booth, R. K., Moore, I. D., & O'Loughlin, E. M., 1987. Comparative hydrological behaviour of forested and cleared catchments in southeastern Australia. Journal of Hydrology 90, 1942.CrossRefGoogle Scholar
Bush, J., & Van Auken, O. 1986. Changes in nitrogen, carbon, and other surface soil properties during secondary succession. Soil Science Society of America, Journal 50, 1597–601.CrossRefGoogle Scholar
Cole, D. W., & Johnson, D. W. 1977. Atmospheric sulphate additions and cation leaching in a Douglasfir ecosystem. Water Resource Research 13, 313–7.Google Scholar
Cole, D. W., Gessel, S. P., & Turner, J. 1978. Comparative mineral cycling in red alder and Douglas-fir. In Utilization and Management of Alder, pp. 327–36, Briggs D. G., DeBell D. S., & Atkinson W. A. (comps.). U.S. Dept. Agr. Forest Service Gen. Tech. Rep. PNW-70. 370 p.Google Scholar
Coleman, N. T., & Thomas, G. W. 1967. The basic chemistry of soil acidity. In Soil Acidity and Liming, eds. Pearson, R. W., & Adams, F., Madison, Wisconsin: American Society of Agronomy.Google Scholar
Cresser, M. S., & Edwards, A. C. 1987. Acidification of Freshwaters. Cambridge: Cambridge University Press.Google Scholar
Cresser, M. S., Billet, M., & Skiba, U. 1989. The effect of acid deposition on soils. Acid Deposition Sources, Effects, and Controls, pp. 169–95, ed. Longhurst, J. W. S., British Library Technical Communications.Google Scholar
Cresser, M. S., Pugh, K. B., & Edwards, A. C. 1987. Soils and surface water quality in northeastern Scotland. Transactions of the Royal Society Edinburgh: Earth Science 78, 399404.CrossRefGoogle Scholar
Crocker, R. L., & Major, J. 1955. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. Journal of Ecology 43, 427–48.CrossRefGoogle Scholar
Crocker, R. L., & Dickson, B. A. 1957. Soil development on the recessional moraines of the Herbert and Mendenhall Glaciers, south-eastern Alaska. Journal of Ecology 45, 169–84.Google Scholar
Dahl, E. 1988. Acidification of soils in the Rondane mountains, South Norway, due to acid precipitation. Okoforsk rapport 1, 153, As.Google Scholar
DeBell, D., Whitesell, C. D., & Schubert, T. 1989. Using N2-fixing Albizia to increase growth of Eucalyptus plantations in Hawaii. Forestry Science 35, 6475.Google Scholar
Dickson, G. A., & Crocker, R. L. 1954. Soil development in a chronosequence at Mt. Shasta, California. Journal of Soil Science 5, 173–91.Google Scholar
Drablos, D., & Tollan, A. 1980. Ecological Impact of Acid Precipitation. Mvsen, Norway: Johs Grefslie Trykkeri.Google Scholar
Edwards, A. C., Creasy, J., Skiba, U., Peirson-Smith, T., & Cresser, M. S. 1985a. Long-term rates of acidification in U.K. acidic upland soils. Soil Use and Management 1, 61–5.CrossRefGoogle Scholar
Edwards, A. C., Creasy, J., & Cresser, M. S. 1985b. Factors influencing nitrogen inputs and outputs in two Scottish upland catchments. Soil Use and Management 1, 83–7.CrossRefGoogle Scholar
Edmonds, R. L., & McColl, J.G., 1989. Effects of forest management on soil nitrogen in Pinus radiata stands in the Australian Capital Territory. Forest Ecology and Management 29, 199212.CrossRefGoogle Scholar
Ellis, R. C. 1971. The mobilization of iron by extracts of Eucalyptus leaf litter. Journal of Soil Science 22, 822.CrossRefGoogle Scholar
Enright, N. J. 1978. The inter-relatioships between plant species distribution and properties of soils undergoing podzolization in a coastal area of S.W. Australia. Australian Journal Ecology 3, 389401.Google Scholar
Engstrom, A., Backstrand, G., & Stenram, H., (eds) 1971. Air pollution across national boundaries: the impact on the environment of sulfur in air and precipitation. Rep. No. 93, Ministry for Foreign Affairs; Ministry for Agriculture, Stockholm, Sweden.Google Scholar
Falkengren-Grerup, U. 1986. Soil acidification and vegetation changes in deciduous forest in southern Sweden. Oecologia 70, 339–47.CrossRefGoogle ScholarPubMed
Falkengren-Grerup, U., 1987. Long term changes in pH of forest soils in southern Sweden. Environmental Pollution 43, 7990.CrossRefGoogle ScholarPubMed
Falkengren-Grerup, U., & Erikson, H. 1990. Changes in soil, vegetation, and forest yield between 1947 and 1988 in beech and oak sites of southern Sweden. Forest Ecology and Management (in press).CrossRefGoogle Scholar
Falkengren-Grerup, U., Linnermark, N., & Tyler, G. 1987. Changes in acidity and cation pools of south Swedish soils. Chemosphere 16, 1012.Google Scholar
Federer, C. A., Hornbeck, J. W., Tritton, L. M., Martin, C. W., Pierce, R. S., & Smith, C. T. 1989. Longterm depletion of calcium and other nutrients in eastern U.S. Forests. Environmental Management 13, 593601.Google Scholar
Forschungsbeirat Waldschäden. 1990. 3. Bericht. Kernforschungszentrum Karlsruhe, in press.Google Scholar
France, E., Binkley, D., & Valentine, D. 1989. Soil chemistry changes after 27 years under four tree species in southern Ontario. Canadian Journal of Forest Research, in press.Google Scholar
Franklin, J. F., Dyrness, C. T., Moore, D. G., & Tarrant, R. F. 1968. Chemical soil properties under coastal Oregon stands of alder and conifers. In Biology of Alder, eds, Trappe, J. M. et al. pp. 157–72. Portland, Oregon: USDA PNW For. Range Exp. Sta.Google Scholar
Gholz, H. L., Fisher, R. F., & Pritchett, W. L. 1985. Nutrient dynamics in slash pine plantation ecosystems. Ecology 66, 647–59.Google Scholar
Gehrmann, J., Biittner, G., & Ulrich, B. 1987. Untersuchungen zum Stand der Bodenversauerung wichtiger Waldstandorte im Land Nordrhein-Westfalen. Ber Forschungszentr Waldökosyst Univ Göttingen B 4: 233 pp.Google Scholar
Grimm, R., & Rehfuess, K. E. 1986. Kurzfristige Veranderungen von Bodenreaktion und Kationenaustau-scheigenschaften in einem Meliorationsversuch zu Kiefer auf Podsol-Pseudogley in der Oberpfalz. Allg. Forst- u. Jagdztg 157, 205–13.Google Scholar
Haines, S. G., & Cleveland, G. 1981. Seasonal variation in properties of five forest soils in southwest Georgia. Soil Science Society of America, Journal 45, 139–43.CrossRefGoogle Scholar
Hallbacken, L., & Tamm, C. O. 1986. Changes in soil acidity from 1927 to 1982–1984 in a forest area of southwest Sweden. Scandinavian Journal of Forest Research 1, 219–32.Google Scholar
Hauhs, M. 1989. Lange Bramke: an ecosystem study of a forested catchment. In Acidic Precipitation Vol. 1 pp. 275305, eds. Adriano, D. C., & Havas, M., New York-Berlin-Heidelberg: Springer-Verlag.Google Scholar
Hildebrand, E. E. 1986. Zustand und Entwicklung der Austauscheigenschaften von Mineralboden aus Standorten mit erkrankten Wäldbestanden. Forstwiss. Centralbl, 105, 6076.Google Scholar
Hopmans, P., Flinn, D. W., & Farrell, P. W. 1980. Nitrogen mineralization in a sandy soil under native eucalypt forest and exotic pine plantations in relation to moisture content. Commonwealth Soil Science Plant Analysis 11, 71–9.Google Scholar
Jacks, G., Anderson, S., & Stegman, B. 1989. pH changes in forested and open land in Sweden. In Ecological Impact of Acidification. Proceeding of the Joint Symposium “Environmental Threats to Forest and other Ecosystems” held at the University of Oulo. Finland, November, 14 1988. Ed. Szabolcs, I..Google Scholar
Johnson, D. W. 1987. A discussion of changes in soil acidity due to natural processes and acid deposition. In Effects of Acidic Deposition on Forests, Wetlands, and Agricultural Ecosystems, pp. 333–46, eds, Hutchinson, T. C., & Meema, K., New York, Toronto: Springer-Verlag.Google Scholar
Johnson, D. W., & Todd, D. E. 1984. Effects of acid irrigation on carbon dioxide evolution, extractable nitrogen, phosphorus, and aluminum in a deciduous forest soil. Soil Science Society of America, Journal 48, 664–66.Google Scholar
Johnson, D. W., & Todd, D. E. 1987. Nutrient export by leaching and whole-tree harvesting in a loblolly pine and mixed oak forest. Plant and Soil 102, 99109.CrossRefGoogle Scholar
Johnson, D. W., & Todd, D. E. 1989. Nutrient cycling in forests of Walker Branch Watershed: Roles of uptake and leaching in causing soil change. Journal Environmental Quality 19, 97104.Google Scholar
Johnson, D. W., Cole, D. W., & Gessel, S. P., Singer, M. J., & Minden, R. V. 1977. Carbonic acid leaching in a tropical, temperate, subalpine and northern forest soil. Arctic and Alpine Reserach 9, 329–43.CrossRefGoogle Scholar
Johnson, D. W., Cole, D. W., & Gessel, S. P. 1979. Acid precipitation and soil sulfate adsorption properties in a tropical and in a temperate forest soil. Biotropica 11, 3842.Google Scholar
Johnson, D. W., Hornbeck, J. W., Kelly, J. M., Swank, W. T., & Todd, D. E. 1980. Regional patterns of soil sulfate accumulation: relevance to ecosystem sulfur budgets. In Atmospheric sulfur deposition: Environmental impact and health effcts, pp. 507–20, eds, Shriner, D. S., Richmond, C. R., & Lindberg, S. E. Ann Arbor, Michigan: Ann Arbor Science, Michigan.Google Scholar
Johnson, D. W., Henderson, G. S., & Todd, D. E. 1981. Evidence of modern accumulation of sulfate in an east Tennessee forested Ultisol. Soil Science 132, 422–6.CrossRefGoogle Scholar
Johnson, D. W., Richter, D. D., Lovett, G. M., & Lindberg, S. E. 1985. The effects of atmospheric deposition on potassium, calcium, and magnesium cycling in two deciduous forests. Canadian Journal of Forest Research 15, 773–82.Google Scholar
Johnson, D. W., Richter, D. D., Van Miegroet, H., Cole, D. W., & Kelly, J. M. 1986. Sulfur cycling in five forest ecosystems. Water Air and Soil Pollution 30, 965–79.Google Scholar
Johnson, D. W., Henderson, G. S., & Todd, D. E. 1988a. Changes in nutrient distribution in forests and soils of Walker Branch Watershed over an eleven-year period. Biogeochemistry 5, 275–93.CrossRefGoogle Scholar
Johnson, D. W., Kelly, J. M., Swank, W. T., Cole, D. W., Van Miegroet, H., Hornbeck, J. W., Pierce, R. S., & Van Lear, D., 1988b. The effects of leaching and whole-tree harvesting on cation budgets of several forests. Journal of Environmental Quality 17, 418–24.CrossRefGoogle Scholar
Johnson, W. M., (ed.) 1981. Soil taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Tunbridge Wells: Castle House Publications Ltd.Google Scholar
Johnston, A. E., Goulding, K. W. T., & Poulton, P. R. 1986. Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted. Soil Use and Management 2, 310.Google Scholar
Keeves, A. 1966. Some evidence of loss of productivity with successive rotations of Pinus radiata in the south east of S. Australia. Australian Forestry 30, 5163.Google Scholar
Killham, K., & Wainwright, M. 1984. Chemical and microbiological changes in soil following exposure to heavy atmospheric pollution. Environmental Pollution 33A, 121–31.Google Scholar
Krug, E. C., & Frink, C. R. 1983. Acid rain on acid soil: a new perspective Science 221, 520–5.Google Scholar
Lambert, M. J., Turner, J., & Turvey, N. D. 1979. Relationships between atmospheric sulphur supplies and forest tree growth. In Proceedings Internal. Symposium Sulphur Emission and the Environment, pp. 274–5. The Society of Chemical Industry. London, U.K. 1979.Google Scholar
Liljelund, L. E., Nilsson, S. I., & Anderson, I. 1986. Tradslagsvalets betydelse for mark och vatten. Report PM 3182, National Swedish Environment Protection Board. (In Swedish with a summary in English.)Google Scholar
Linnermark, N. 1960. Podsol and brownearth I–II. (Summary in English.) Publications from the departments of mineralogy, paleontology and quarternary geology. University of Lund, Sweden 75, 1233.Google Scholar
Linzon, S. N., & Temple, P. J. 1980. Soil resampling and pH measurements after an 18 year period in Ontario. In Ecological Impact of Acid Precipitation, pp. 176–7, eds, Drablos, D., & Tollan, A., Mysen, Norway: Johs. Grefslie Trykkeri.Google Scholar
Lundmark, J. E. 1989. Marktillstand och markforandringar. – Skogsfakta Konferens 12:11–19. Sveriges Lantbruksuniversitet, Skogsvetenskapliga Fakulteten, Uppsala.Google Scholar
Mann, L. K. 1986. Changes in soil carbon storage after cultivation. Soil Science 142, 279–88.CrossRefGoogle Scholar
Matzner, E. 1988. Der Stoffumsatz zweier Waldökosysteme im Soiling. Berichte des Forshungszentrums Waldökosysteme/Waldsterben, Reihe A., Bd. 40, 217 pp. Göttingen, FRG.Google Scholar
McCormick, L. H., & Steiner, K. 1978. Variation in aliminum tolerance among six genera of trees. Forest Science 24, 565–8.Google Scholar
McFee, W. W. 1980. Sensitivity of soil regions to long-term acid precipitation. In Atmospheric Sulfur Deposition, pp. 495505, eds, Shiner, D. S., Richmond, C. R., & Lindberg, S. E., Ann Arbor: Ann Arbor Science.Google Scholar
Mehlich, A. 1964. Influence of sorbed hydroxyl and sulfate on liming efficiency, pH, and conductivity. Soil Science Society America, Proceedings 27, 496–9.Google Scholar
Nihlgard, B. 1972. Plant biomass, primary production and distribution of elements of beech and planted spruce forest ecosystem in south Sweden. Oikos 23, 6981.Google Scholar
Nilsson, J., & Grennfelt, P. I., (eds) 1988. Critical Loads for Sulfur and Nitrogen. Stockholm: Miljorapport 15.Google Scholar
Nilsson, S. I. 1985. Why is Lake Gardsjon acid? An evaluation of processes contributing to soil and water acidification. Ecological Bulletins 37, 311–18.Google Scholar
Nilsson, S. I. 1986. Critical deposition limits for forest soils. In Critical loads for nitrogen and sulphur, pp. 3769, ed. Nilsson, J.. Nordic Council of Ministers, Miljoraport.Google Scholar
Nilsson, S. I. 1988. Acidity properties in Swedish forest soils. Regional patterns and implications for forest liming. Scandinavian Journal of Forest Research 3, 417–24.CrossRefGoogle Scholar
Olson, J. S. 1958. Rates of succession and soil changes on southern Lake Michigan sand dunes. Botanical Gazette 119, 125–70.Google Scholar
Persson, S., Malmer, N., & Wallen, B. 1987. Leaf litter fall and soil acidity during 47 years of secondary succession in a temperate deciduous forest. Vegetatio 73, 3145.Google Scholar
Posch, M., Kauppi, L., & Kamari, J. 1985. Sensitivity analysis of a regional scale acidification model. Collaborative paper, IIASA, Laxenburg, Austria, 33 pp.Google Scholar
Rasmussen, L. 1987. Input/Output budgets and internal cycling of elements in three spruce forest ecosystems. In GEOMON, International Workshop on Geochemistry and Monitoring in Representative Basins, pp. 1315. eds, Moldan, B., & Paces, T., Prague: Geological Survey.Google Scholar
Reuss, J. O. 1989. Soil-solution equlibria in lysimeter leachates under red alder. In Effects of Air Pollution on Western Forests, pp. 547–59, eds, Olson, R. K., & LeFohn, A. S., Anaheim, California, U.S.A.: Air and Waste Management Association.Google Scholar
Reuss, J. O., & Johnson, D. W. 1985. Effect of soil processes on the acification of water by acid deposition. Journal of Environmental Quality 14, 2631.Google Scholar
Reuss, J. O., & Johnson, D. W. 1986. Acid Deposition and the Acidification of Soil and Water. New York: Springer-Verlag.Google Scholar
Richter, D. D., Comer, P. J., King, K. S., Sawin, H. S., & Wright, D. S. 1988. Effects of low ionic strength solutions on pH of acid forest soils. Soil Science Society of America Journal 52, 261–4.Google Scholar
Roberge, M. A. 1987. Evolution of the pH of various forest soils over the past twenty years. Information Report LAU-X-77, Laurentian Forestry Center, Canadian Forestry Service, Sainte-Foy, Quebec.Google Scholar
Robertson, G. P., & Vitousek, P. 1981. Nitrification potentials in primary and secondary succession. Ecology 62, 376–86.Google Scholar
Rochelle, B. P., Church, M. R., & David, M. B. 1987. Sulfur retention at intensively-studied watersheds in the U.S. and Canada. Water, Air, and Soil Pollution 33, 7383.Google Scholar
Rost-Siebert, K. 1988. Ergebnisse vegetationskundlicher und bodenchemischer Vergleichsuntersuchungen zur Feststellung immissionsbedingter Veränderungen während der letzten Jahrzehnte. Ber For-schungszentr Wäldokosyst Univ Göttingen B8: 158 pp.Google Scholar
Ryan, P. J., & McGarity, J. W. 1983. The nature and spatial variability of soil properties adjacent to large forest eucalypts. Soil Science Society of America, Journal 47, 286–93.Google Scholar
Schulte-Bisping, H., 1989. Räumliche und saisonale Variabilität des chemischen Bodenzustands in Buchen-und Kiefern-Waldökosystemen mit Schädigungsgradienten. Ber Frschungszentr Waldökosyst Univ Göttingen A48: 175 S.Google Scholar
Seip, H. M. 1980. Acidification of freshwaters: sources and mechanisms. In Ecological Impacts of Acid Precipitation, pp. 358–66, eds, Drablos, D., & Tollan, A., Mysen, Norway: Johs. Grefslie Trykkeri A/S.Google Scholar
Skeffington, R. A., & Brown, K. A. 1986. The effect of five years acid treatment on leaching, soil chemistry, and weathering of a humo-ferric podzol. Water, Air and soil Pollution 31, 891900.CrossRefGoogle Scholar
Skeffington, R. A., & Wilson, E. J. 1988. Excess nitrogen deposition: issues for consideration. Environmental Pollution 54, 159–84.Google Scholar
Skiba, U., & Cresser, M. S. 1986. Effects of precipitation acidity on the chemistry and microbiology of Sitka Spruce litter leachate. Environmental Pollution 42A, 6578.Google Scholar
Skiba, U., & Cresser, M. S. 1987. Factors regulating the chemistry of forest litter and soil lechates; acid rain, atmospheric pollution, and litter type. In Acid Rain: Scientific and Technical Advances, pp. 409–14, eds, Perry, R., Harrison, R. M., Bell, J. N. B., & Lester, J. N., London: Sepler.Google Scholar
Skiba, U., & Cresser, M. S. 1989. Prediction of long-term effects of rainwater acidity on peat and associated drainage water chemistry in upland areas. Water Research 12, 1477–82.Google Scholar
Skiba, U., Radhi Sanyi, H., Peirson-Smith, T., & Cresser, M. S. 1988. Acid deposition – peat interactions and their significance. Journal of the Science of Food and Agriciculture 45, 137–8.Google Scholar
Skiba, U., Cresser, M. S., Derwent, R. G., & Futty, D. W. 1989. Peat acidification in Scotland. Nature 337, 68–9.Google Scholar
Streletzki, H.-W., 1989. Untersuchungen zur Startdiingung verschiedener Nadel- und Laubbaumarten unter besonderer Berücksichtigung der langfristigen Auswirkung einer einmaligen Düngung. Diss Univ Göttingen.Google Scholar
Tamm, C. O. 1968. An attempt to assess the optimum nitrogen level in Norway spruce under field conditions. Studia Forestalia Suecica 61, 167.Google Scholar
Tamm, C. O., & Hallbacken, L. 1988. Changes in soil acidity from the 1920s to the 1980s in two forest areas with different acid deposition. Ambio 17, 5661.Google Scholar
Tarrant, R. F., & Miller, R. E. 1963. Accumulation of organic matter and nitrogen beneath a plantation of red alder and Douglas-fir. Soil Science Society of America, Proceedings 27, 231–4.Google Scholar
Thornton, F. C., Schaedle, M., & Raynal, D. J. 1986. Effects of aluminum on honey locust (Gleditsia triacanthos L.) grown in solution culture. Journal of Experimental Botany 37, 775–85.Google Scholar
Troedsson, T. 1985. Sensitivity of Swedish forest soils to acidification related to site characteristics. Report PM 3001 National Swedish Environment Protection Board, Solna, 51 pp.Google Scholar
Turner, J. 1982. Long term superphosphate trial in regeneration of Pinus radiata at Belanglo State Forst, N.S.W. Australian Forest Research 12, 19.Google Scholar
Turner, J., & Kelly, J. 1977. Soil chemical properties under naturally regenerated Eucalyptus spp. and planted Douglas-fir. Australian Forest Research 7, 163–72.Google Scholar
Turner, J., & Kelly, J. 1981. Relationships between soil nutrients and vegetation in a north coast forest, New South Wales. Australian Forest Research 11, 201–8.Google Scholar
Turner, J., & Lambert, M. J. 1979. Comparison of sulphur cycling between a conifer and a native forest in the vicinity of a coal-burning power station, pp. 228–30. Proceedings Internal. Symposium Sulphur Emission and the Environment. The Society of Chemical Industry. London, U.K. 1979.Google Scholar
Turner, J., & Lambert, M. J. 1983. Nutrient cycling within a 27-year-old Eucalyptus grandis plantation in New South Wales. Forest Ecology and Management 6, 156–68.Google Scholar
Turner, J., & Lambert, M. J. 1986. Fate of applied nutrients in a long-term superphosphate trial in Pinus radiata. Plant and Soil 93, 373–82.Google Scholar
Turner, J., & Lambert, M. J. 1988. Effects of Pinus radiata plantations on soil properties. New Zealand Journal of Forestry Science 18, 177–91.Google Scholar
Ugolini, F. 1968. Soil development and alder invasion in a recently deglaciated area of Glacier Bay, Alaska. In Biology of Alder, pp. 115–40, eds, Trappe, J. M., Franklin, J. F., Tarrant, R. F., & Hansen, G. M., Portland, Oregon: USDA Forest Service.Google Scholar
Ugolini, F., Minden, R., Dawson, H., & Zachara, J. 1977. An example of soil processes in the Abies amabilis zone of Central Cascades, Washington. Soil Science 124, 291302.Google Scholar
Ulrich, B. 1980. Production and consumption of hydrogen ions in the ecosphere. In Effects of Acid Precipitation on Terrestrial Ecosystems, pp. 255–82, eds, Hutchinson, T. C., & Havas, M., New York: Plenum Press.Google Scholar
Ulrich, B. 1985. Interaction of indirect and direct effects of air pollutants in forests. In Air Pollution and Plants, pp. 149–81, ed., Tryanowski, C., Weinheim, S.: VCH Verlagses.Google Scholar
Ulrich, B. 1986. Natural and anthropogenic components of soil acidification. Z Pflanzenernähr Bodenkde 149, 702–17.Google Scholar
Ulrich, B. 1989. Effects of Acidic Precipitation on Forest Ecosystems in Europe. Advances in Environmental Science, Vol 2, pp. 189272. New York-Heidelberg-Berlin: Springer Verlag.Google Scholar
Ulrich, B., & Malessa, V. 1989. Tiefengradienten der Bodenversauerung. Z Pflanzenernähr Bodenk 152, 81–4.Google Scholar
Ulrich, B., & Meyer, H. 1987. Chemischer Zustand der Waldböden Deuschlands zwischen 1920 und 1960, Ursachen und Tendenzen seiner Veränderung. Ber Forschungszentr Waldökosyst Univ Göttingen B6: 133 S.Google Scholar
Ulrich, B., Meyer, H., Jänich, K., & Büttner, G. 1989. Basenverluste in den Böden von Hainsimsen-Buchenwäldern in Südniedersachsen zwischen 1954 und 1986. Forst u Holz 44, 251–3.Google Scholar
Ulrich, B., Mayer, R., & Khanna, P. K. 1980. Chemical changes due to acid precipitation in a losses-derived soil in central Europe. Soil Science 130, 193–9.Google Scholar
Van Breeman, N. J., Mulder, J., & Driscoll, C. T. 1983. Acidification and alkalinization of soils. Plant and Soil 75, 283308.Google Scholar
Van Cleve, K., Viereck, L. A., & Schlentner, R. L. 1971. Accumulation of nitrogen in alder (Alnus) ecosystems near Fairbanks, Alaska. Arctic and Alpine Research 3, 101–14.Google Scholar
Van Cleve, K., & Vierek, L. A. 1972. Distribution of selected chemical elements in even-aged alder (Alnus) ecosystems in Fairbanks, Alaska. Arctic and Alpine Research 4, 239.Google Scholar
Van Miegroet, H., & Cole, D. W. 1984. The impact of nitrification on soil acidification and cation leaching in a red alder forest. Journal of Environmental Quality 13, 586–90.Google Scholar
Van Miegroet, H., & Cole, D. W. 1985. Acidification sources in red alder and Douglas-fir soils – Importance of nitrification. Soil Science Society of America, Journal 49, 1274–79.CrossRefGoogle Scholar
Van Miegroet, H., & Cole, D. W. 1985. Internal vs atmospheric sources of acidification. In Acid Rain in the pacific northwest – Proceedings of the Third Annual Conference of the Northwest Association of Environmental Studies, pp. 4866, ed., Baldwin, J. H., University of Victoria, Victoria, British Columbia, Canada.Google Scholar
Van Miegroet, H., & Cole, D. W. 1988. Influence of nitrogen-fixing alder on acidification and cation leaching in a forest soil. In Cole, D. W., and Gessel, S. P., (ed.) Forest Site Evaluation and Long-term Productivity. Seattle: University of Washington Press.Google Scholar
Van Miegroet, H., & Cole, D. W., Binkley, D., & Sollins, P. 1989. The effect of nitrogen accumulation and nitrification on soil chemical properties in alder forests. Paper presented at the 82nd Annual Meeting of the Air and Waste Management Association, Anaheim, Ca, June 25–30, 1989. Preprint 89–134.1.Google Scholar
Van Miegroet, H., Cole, D. W., & Homann, P. S., (In Press) The effect of alder forest cover and alder forest conversion on site fertility and productivity. In Gessel S. P., (ed.) Sustained Productivity of Forest Land. Proceedings of the 7th North American Forest Soil Conference.Google Scholar
Van Oyen, G. J., & Charley, J. L. 1983. Low calcium reserves in some N.S.W. coastal soils and their significance in relation to short rotation wood harvesting. Proceedings, 10th Conference Institute of Foresters of Australia, pp. 65–7.Google Scholar
Wagner, A. 1986. Waldbaurichtlinien für den Staatswald des Saarlandes. 1. Teil: Standortsokologische Grundlagen. Ministerium f. Wirtschaft, Saarbrücken.Google Scholar
Webb, L. J. 1954. Aluminium accumulation in the Australian–New Guinea flora. Australian Journal Botany 2, 176–96.Google Scholar
Webb, L. J., Tracey, J. G., Williams, W. T., & Lance, G. N. 1969. The pattern of mineral return in leaf litter of three sub-tropical Australian forests. Australian Forestry 33, 99110.CrossRefGoogle Scholar
Wiklander, L. 1973/1974. The acidification of soil by acid precipitation. Grundforbattring 26, 155–64.Google Scholar
Wiklander, L., & Andersson, A. 1972. The replacing efficiency of hydrogen ion in relation to base saturation and pH. Geoderma 7, 159–65.Google Scholar
Wilson, M. J., Lilly, A., Nolan, A. J., & Cresser, M. S. 1989. Vulnerable soils and their distribution. In Acidification in Scotland, pp. 5970. Symposium Proceedings, 8 November, 1988, Scottish Development Department, Edinburgh.Google Scholar
Zavitkovski, J., & Newton, M. 1977. Litterfall and litter accumulation in red alder stands in Western Oregon. Plant and Soil 35, 257–68.Google Scholar
Zezschwitz, E. von 1982. Akute Bodenversauerung in den Kammlagen des Rothaargebirges. Forst- u. Holzwirt 37, 275–6.Google Scholar
Zezschwitz, E. von 1985. Immissionsbedingte Änderungen analytischer Kennwerte nordwestdeutscher Mittelgebirgsböden. Geol.Jb. F20, 341.Google Scholar