Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-14T05:21:02.646Z Has data issue: false hasContentIssue false

Adaptive-to-maladaptive gradient of emotion regulation tendencies are embedded in the functional–structural hybrid connectome

Published online by Cambridge University Press:  27 March 2024

Wonyoung Kim
Affiliation:
Department of Psychology, Emory University, Atlanta, GA, USA Department of Psychology, Sungkyunkwan University, Seoul, South Korea
M. Justin Kim*
Affiliation:
Department of Psychology, Sungkyunkwan University, Seoul, South Korea Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
*
Corresponding author: M. Justin Kim; Email: minuekim@skku.edu

Abstract

Background

Emotion regulation tendencies are well-known transdiagnostic markers of psychopathology, but their neurobiological foundations have mostly been examined within the theoretical framework of cortical–subcortical interactions.

Methods

We explored the connectome-wide neural correlates of emotion regulation tendencies using functional and diffusion magnetic resonance images of healthy young adults (N = 99; age 20–30; 28 females). We first tested the importance of considering both the functional and structural connectome through intersubject representational similarity analyses. Then, we employed a canonical correlation analysis between the functional–structural hybrid connectome and 23 emotion regulation strategies. Lastly, we sought to externally validate the results on a transdiagnostic adolescent sample (N = 93; age 11–19; 34 females).

Results

First, interindividual similarity of emotion regulation profiles was significantly correlated with interindividual similarity of the functional–structural hybrid connectome, more so than either the functional or structural connectome. Canonical correlation analysis revealed that an adaptive-to-maladaptive gradient of emotion regulation tendencies mapped onto a specific configuration of covariance within the functional–structural hybrid connectome, which primarily involved functional connections in the motor network and the visual networks as well as structural connections in the default mode network and the subcortical–cerebellar network. In the transdiagnostic adolescent dataset, stronger functional signatures of the found network were associated with higher general positive affect through more frequent use of adaptive coping strategies.

Conclusions

Taken together, our study illustrates a gradient of emotion regulation tendencies that is best captured when simultaneously considering the functional and structural connections across the whole brain.

Type
Original Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. (1991). Integrative guide for the 1991 CBCL 4-18, YSR, and TRF profiles. Burlington, VT: Department of Psychiatry, University of Vermont.Google Scholar
Ahmed, S. P., Bittencourt-Hewitt, A., & Sebastian, C. L. (2015). Neurocognitive bases of emotion regulation development in adolescence. Developmental Cognitive Neuroscience, 15, 1125. https://doi.org/10.1016/j.dcn.2015.07.006CrossRefGoogle ScholarPubMed
Aldao, A., Gee, D. G., De Los Reyes, A., & Seager, I. (2016). Emotion regulation as a transdiagnostic factor in the development of internalizing and externalizing psychopathology: Current and future directions. Development and Psychopathology, 28(4pt1), 927946. https://doi.org/10.1017/S0954579416000638CrossRefGoogle ScholarPubMed
Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30(2), 217237. https://doi.org/10.1016/j.cpr.2009.11.004CrossRefGoogle ScholarPubMed
Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, A., … Milham, M. P. (2017). An open resource for transdiagnostic research in pediatric mental health and learning disorders. Scientific Data, 4(1), 126. https://doi.org/10.1038/sdata.2017.181CrossRefGoogle ScholarPubMed
Amico, E., & Goñi, J. (2018). Mapping hybrid functional-structural connectivity traits in the human connectome. Network Neuroscience, 2(3), 306322. https://doi.org/10.1162/netn_a_00049CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain's default network. Neuron, 65(4), 550562. https://doi.org/10.1016/j.neuron.2010.02.005CrossRefGoogle ScholarPubMed
Ayers, T. S., Sandler, I. N., Bernzweig, J. A., Harrison, R., Wampler, T., & Lustig, J. (1989). Handbook for the content analysis of children's coping responses. Tempe, AZ: Program for Prevention Research, Arizona State University.Google Scholar
Babayan, A., Erbey, M., Kumral, D., Reinelt, J. D., Reiter, A. M., Röbbig, J., … Villringer, A. (2019). A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Scientific Data, 6(1), 121. https://doi.org/10.1038/sdata.2018.308CrossRefGoogle ScholarPubMed
Baum, G. L., Cui, Z., Roalf, D. R., Ciric, R., Betzel, R. F., Larsen, B., … Satterthwaite, T. D. (2020). Development of structure–function coupling in human brain networks during youth. Proceedings of the National Academy of Sciences, 117(1), 771778. https://doi.org/10.1073/pnas.1912034117CrossRefGoogle ScholarPubMed
Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M. F., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage, 34(1), 144155. https://doi.org/10.1016/j.neuroimage.2006.09.018CrossRefGoogle ScholarPubMed
Berking, M., Wirtz, C. M., Svaldi, J., & Hofmann, S. G. (2014). Emotion regulation predicts symptoms of depression over five years. Behaviour Research and Therapy, 57, 1320. https://doi.org/10.1016/j.brat.2014.03.003CrossRefGoogle ScholarPubMed
Bo, K., Kraynak, T. E., Kwon, M., Sun, M., Gianaros, P. J., & Wager, T. D. (2023). Deconstructing the brain bases of emotion regulation: A systems-identification approach using Bayes factors. bioRxiv. https://doi.org/10.1101/2023.04.26.538485Google Scholar
Bo, K., Yin, S., Liu, Y., Hu, Z., Meyyappan, S., Kim, S., … Ding, M. (2021). Decoding neural representations of affective scenes in retinotopic visual cortex. Cerebral Cortex, 31(6), 30473063. https://doi.org/10.1093/cercor/bhaa411CrossRefGoogle ScholarPubMed
Braunstein, L. M., Gross, J. J., & Ochsner, K. N. (2017). Explicit and implicit emotion regulation: A multi-level framework. Social Cognitive and Affective Neuroscience, 12(10), 15451557. https://doi.org/10.1093/scan/nsx096CrossRefGoogle ScholarPubMed
Buckner, R. L., & DiNicola, L. M. (2019). The brain's default network: Updated anatomy, physiology and evolving insights. Nature Reviews Neuroscience, 20(10), 593608. https://doi.org/10.1038/s41583-019-0212-7CrossRefGoogle ScholarPubMed
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., … Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 29812990. https://doi.org/10.1093/cercor/bht154CrossRefGoogle ScholarPubMed
Caballero, C., Nook, E. C., & Gee, D. G. (2022). Managing fear and anxiety in development: A framework for understanding the neurodevelopment of emotion regulation capacity and tendency. Neuroscience & Biobehavioral Reviews, 145, 105002. https://doi.org/10.1016/j.neubiorev.2022.105002Google ScholarPubMed
Cameron, L. D., & Overall, N. C. (2018). Suppression and expression as distinct emotion-regulation processes in daily interactions: Longitudinal and meta-analyses. Emotion, 18(4), 465. https://doi.org/10.1037/emo0000334CrossRefGoogle ScholarPubMed
Casey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28(1), 6277. https://doi.org/10.1016/j.dr.2007.08.003CrossRefGoogle ScholarPubMed
Cash, R. F., Müller, V. I., Fitzgerald, P. B., Eickhoff, S. B., & Zalesky, A. (2023). Altered brain activity in unipolar depression unveiled using connectomics. Nature Mental Health, 1(3), 174185. https://doi.org/10.1038/s44220-023-00038-8CrossRefGoogle Scholar
Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A., & Wager, T. D. (2015). A sensitive and specific neural signature for picture-induced negative affect. PLoS Biology, 13(6), e1002180. https://doi.org/10.1371/journal.pbio.1002180CrossRefGoogle ScholarPubMed
Che, X., Luo, X., Tong, D., Fitzgibbon, B. M., & Yang, J. (2015). Habitual suppression relates to difficulty in regulating emotion with cognitive reappraisal. Biological Psychology, 112, 2026. https://doi.org/10.1016/j.biopsycho.2015.09.011CrossRefGoogle ScholarPubMed
Colombo, D., Fernández-Álvarez, J., Suso-Ribera, C., Cipresso, P., Valev, H., Leufkens, T., … Botella, C. (2020). The need for change: Understanding emotion regulation antecedents and consequences using ecological momentary assessment. Emotion, 20(1), 30. https://doi.org/10.1037/emo0000671CrossRefGoogle ScholarPubMed
Cracco, E., Goossens, L., & Braet, C. (2017). Emotion regulation across childhood and adolescence: Evidence for a maladaptive shift in adolescence. European Child & Adolescent Psychiatry, 26, 909921. https://doi.org/10.1007/s00787-017-0952-8CrossRefGoogle ScholarPubMed
Davis, M., & Suveg, C. (2014). Focusing on the positive: A review of the role of child positive affect in developmental psychopathology. Clinical Child and Family Psychology Review, 17, 97124. https://doi.org/10.1007/s10567-013-0162-yCrossRefGoogle ScholarPubMed
Dinga, R., Schmaal, L., Penninx, B. W., van Tol, M. J., Veltman, D. J., van Velzen, L., … Marquand, A. F. (2019). Evaluating the evidence for biotypes of depression: Methodological replication and extension of. Neuroimage: Clinical, 22, 101796. https://doi.org/10.1016/j.nicl.2019.101796CrossRefGoogle ScholarPubMed
Doré, B. P., Weber, J., & Ochsner, K. N. (2017). Neural predictors of decisions to cognitively control emotion. Journal of Neuroscience, 37(10), 25802588. https://doi.org/10.1523/JNEUROSCI.2526-16.2016CrossRefGoogle ScholarPubMed
Doucet, G. E., Janiri, D., Howard, R., O'Brien, M., Andrews-Hanna, J. R., & Frangou, S. (2020). Transdiagnostic and disease-specific abnormalities in the default-mode network hubs in psychiatric disorders: A meta-analysis of resting-state functional imaging studies. European Psychiatry, 63(1), e57. https://doi.org/10.1192/j.eurpsy.2020.57CrossRefGoogle ScholarPubMed
Drabant, E. M., McRae, K., Manuck, S. B., Hariri, A. R., & Gross, J. J. (2009). Individual differences in typical reappraisal use predict amygdala and prefrontal responses. Biological Psychiatry, 65(5), 367373. https://doi.org/10.1016/j.biopsych.2008.09.007CrossRefGoogle ScholarPubMed
Eftekhari, A., Zoellner, L. A., & Vigil, S. A. (2009). Patterns of emotion regulation and psychopathology. Anxiety, Stress, & Coping, 22(5), 571586. https://doi.org/10.1080/10615800802179860CrossRefGoogle ScholarPubMed
Elliott, M. L., Romer, A., Knodt, A. R., & Hariri, A. R. (2018). A connectome-wide functional signature of transdiagnostic risk for mental illness. Biological Psychiatry, 84(6), 452459. https://doi.org/10.1016/j.biopsych.2018.03.012CrossRefGoogle ScholarPubMed
Etkin, A., Büchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews Neuroscience, 16(11), 693700. https://doi.org/10.1038/nrn4044CrossRefGoogle ScholarPubMed
Fernandez, K. C., Jazaieri, H., & Gross, J. J. (2016). Emotion regulation: A transdiagnostic perspective on a new RDoC domain. Cognitive Therapy and Research, 40(3), 426440. https://doi.org/10.1007/s10608-016-9772-2CrossRefGoogle ScholarPubMed
Fine, N. B., Schwartz, N., Hendler, T., Gonen, T., & Sheppes, G. (2022). Neural indices of emotion regulatory implementation correlate with behavioral regulatory selection: Proof-of-concept investigation. Frontiers in Behavioral Neuroscience, 16, 835253. https://doi.org/10.3389/fnbeh.2022.835253CrossRefGoogle ScholarPubMed
Finn, E. S., & Bandettini, P. A. (2021). Movie-watching outperforms rest for functional connectivity-based prediction of behavior. Neuroimage, 235, 117963. https://doi.org/10.1016/j.neuroimage.2021.117963CrossRefGoogle ScholarPubMed
Finn, E. S., Glerean, E., Khojandi, A. Y., Nielson, D., Molfese, P. J., Handwerker, D. A., & Bandettini, P. A. (2020). Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging. Neuroimage, 215, 116828. https://doi.org/10.1016/j.neuroimage.2020.116828CrossRefGoogle ScholarPubMed
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 16641671. https://doi.org/10.1038/nn.4135CrossRefGoogle ScholarPubMed
Fournier, J. C., Bertocci, M., Ladouceur, C. D., Bonar, L., Monk, K., Abdul-Waalee, H., … Phillips, M. L. (2021). Neural function during emotion regulation and future depressive symptoms in youth at risk for affective disorders. Neuropsychopharmacology, 46(7), 13401347. https://doi.org/10.1038/s41386-021-01001-wCrossRefGoogle ScholarPubMed
Frank, D. W., Dewitt, M., Hudgens-Haney, M., Schaeffer, D. J., Ball, B. H., Schwarz, N. F., … Sabatinelli, D. (2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neuroscience & Biobehavioral Reviews, 45, 202211. https://doi.org/10.1016/j.neubiorev.2014.06.010CrossRefGoogle ScholarPubMed
Fresco, D. M., Roy, A. K., Adelsberg, S., Seeley, S., García-Lesy, E., Liston, C., & Mennin, D. S. (2017). Distinct functional connectivities predict clinical response with emotion regulation therapy. Frontiers in Human Neuroscience, 11, 86. https://doi.org/10.3389/fnhum.2017.00086CrossRefGoogle ScholarPubMed
Geerligs, L., Rubinov, M., & Henson, R. N. (2015). State and trait components of functional connectivity: Individual differences vary with mental state. Journal of Neuroscience, 35(41), 1394913961. https://doi.org/10.1523/JNEUROSCI.1324-15.2015CrossRefGoogle ScholarPubMed
Gilbert, K. E. (2012). The neglected role of positive emotion in adolescent psychopathology. Clinical Psychology Review, 32(6), 467481. https://doi.org/10.1016/j.cpr.2012.05.005CrossRefGoogle ScholarPubMed
Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., … Petersen, S. E. (2018). Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron, 98(2), 439452. https://doi.org/10.1016/j.neuron.2018.03.035CrossRefGoogle ScholarPubMed
Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018). Task-induced brain state manipulation improves prediction of individual traits. Nature Communications, 9(1), 113. https://doi.org/10.1038/s41467-018-04920-3CrossRefGoogle ScholarPubMed
Gross, J. J. (2014). Emotion regulation: Conceptual and empirical foundations. In Gross, J. J. (Ed.), Handbook of emotion regulation (pp. 320). New York, NY: Guilford Press.Google Scholar
Gross, J. J., & Muñoz, R. F. (1995). Emotion regulation and mental health. Clinical Psychology: Science and Practice, 2(2), 151164.Google Scholar
Horien, C., Shen, X., Scheinost, D., & Constable, R. T. (2019). The individual functional connectome is unique and stable over months to years. Neuroimage, 189, 676687. https://doi.org/10.1016/j.neuroimage.2019.02.002CrossRefGoogle ScholarPubMed
Jangraw, D. C., Gonzalez-Castillo, J., Handwerker, D. A., Ghane, M., Rosenberg, M. D., Panwar, P., & Bandettini, P. A. (2018). A functional connectivity-based neuromarker of sustained attention generalizes to predict recall in a reading task. Neuroimage, 166, 99109. https://doi.org/10.1016/j.neuroimage.2017.10.019CrossRefGoogle Scholar
Kanske, P., Heissler, J., Schönfelder, S., & Wessa, M. (2012). Neural correlates of emotion regulation deficits in remitted depression: The influence of regulation strategy, habitual regulation use, and emotional valence. Neuroimage, 61(3), 686693. https://doi.org/10.1016/j.neuroimage.2012.03.089CrossRefGoogle ScholarPubMed
Kanske, P., Schönfelder, S., Forneck, J., & Wessa, M. (2015). Impaired regulation of emotion: Neural correlates of reappraisal and distraction in bipolar disorder and unaffected relatives. Translational Psychiatry, 5(1), e497. https://doi.org/10.1038/tp.2014.137CrossRefGoogle ScholarPubMed
Kardan, O., Stier, A. J., Cardenas-Iniguez, C., Schertz, K. E., Pruin, J. C., Deng, Y., … Rosenberg, M. D. (2022). Differences in the functional brain architecture of sustained attention and working memory in youth and adults. PLoS Biology, 20(12), e3001938. https://doi.org/10.1371/journal.pbio.3001938CrossRefGoogle Scholar
Kebets, V., Holmes, A. J., Orban, C., Tang, S., Li, J., Sun, N., … Yeo, B. T. (2019). Somatosensory-motor dysconnectivity spans multiple transdiagnostic dimensions of psychopathology. Biological Psychiatry, 86(10), 779791. https://doi.org/10.1016/j.biopsych.2019.06.013CrossRefGoogle ScholarPubMed
Kim, J., & Cicchetti, D. (2010). Longitudinal pathways linking child maltreatment, emotion regulation, peer relations, and psychopathology. Journal of Child Psychology and Psychiatry, 51(6), 706716. https://doi.org/10.1111/j.1469-7610.2009.02202.xCrossRefGoogle ScholarPubMed
Klumpp, H., Fitzgerald, J. M., Kinney, K. L., Kennedy, A. E., Shankman, S. A., Langenecker, S. A., & Phan, K. L. (2017). Predicting cognitive behavioral therapy response in social anxiety disorder with anterior cingulate cortex and amygdala during emotion regulation. Neuroimage: Clinical, 15, 2534. https://doi.org/10.1016/j.nicl.2017.04.006CrossRefGoogle ScholarPubMed
Kohn, N., Eickhoff, S. B., Scheller, M., Laird, A. R., Fox, P. T., & Habel, U. (2014). Neural network of cognitive emotion regulation – an ALE meta-analysis and MACM analysis. Neuroimage, 87, 345355. https://doi.org/10.1016/j.neuroimage.2013.11.001CrossRefGoogle ScholarPubMed
Kragel, P. A., Čeko, M., Theriault, J., Chen, D., Satpute, A. B., Wald, L. W., … Wager, T. D. (2021). A human colliculus-pulvinar-amygdala pathway encodes negative emotion. Neuron, 109(15), 24042412. https://doi.org/10.1016/j.neuron.2021.06.001CrossRefGoogle ScholarPubMed
Kragel, P. A., Reddan, M. C., LaBar, K. S., & Wager, T. D. (2019). Emotion schemas are embedded in the human visual system. Science Advances, 5(7), eaaw4358. doi: 10.1126/sciadv.aaw4358CrossRefGoogle ScholarPubMed
Lee, F. S., Heimer, H., Giedd, J. N., Lein, E. S., Šestan, N., Weinberger, D. R., & Casey, B. J. (2014). Adolescent mental health – opportunity and obligation. Science, 346(6209), 547549. doi: 10.1126/science.1260497CrossRefGoogle Scholar
Li, W., & Keil, A. (2023). Sensing fear: Fast and precise threat evaluation in human sensory cortex. Trends in Cognitive Sciences, 27(4), 341452. https://doi.org/10.1016/j.tics.2023.01.001CrossRefGoogle ScholarPubMed
Lincoln, T. M., Schulze, L., & Renneberg, B. (2022). The role of emotion regulation in the characterization, development and treatment of psychopathology. Nature Reviews Psychology, 1(5), 272286. https://doi.org/10.1038/s44159-022-00040-4CrossRefGoogle Scholar
Liu, Z., Whitaker, K. J., Smith, S. M., & Nichols, T. E. (2022). Improved interpretability of brain-behavior CCA with domain-driven dimension reduction. Frontiers in Neuroscience, 16, 851827. https://doi.org/10.3389/fnins.2022.851827CrossRefGoogle ScholarPubMed
Lüdecke, D., Ben-Shachar, M. S., Patil, I., & Makowski, D. (2020). Extracting, computing and exploring the parameters of statistical models using R. Journal of Open Source Software, 5(53), 2445. https://doi.org/10.21105/joss.02445CrossRefGoogle Scholar
Mak, A. K., Hu, Z. G., Zhang, J. X., Xiao, Z., & Lee, T. M. (2009). Sex-related differences in neural activity during emotion regulation. Neuropsychologia, 47(13), 29002908. https://doi.org/10.1016/j.neuropsychologia.2009.06.017CrossRefGoogle ScholarPubMed
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27(2_Part_1), 209220.Google Scholar
McPherson, B. C., & Pestilli, F. (2021). A single mode of population covariation associates brain networks structure and behavior and predicts individual subjects’ age. Communications Biology, 4(1), 943. https://doi.org/10.1038/s42003-021-02451-0CrossRefGoogle ScholarPubMed
Mihalik, A., Chapman, J., Adams, R. A., Winter, N. R., Ferreira, F. S., Shawe-Taylor, J., … Alzheimer's Disease Neuroimaging Initiative. (2022). Canonical correlation analysis and partial least squares for identifying brain-behaviour associations: A tutorial and a comparative study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(11), 10551067. https://doi.org/10.1016/j.bpsc.2022.07.012Google Scholar
Mišić, B., Betzel, R. F., De Reus, M. A., Van Den Heuvel, M. P., Berman, M. G., McIntosh, A. R., & Sporns, O. (2016). Network-level structure-function relationships in human neocortex. Cerebral Cortex, 26(7), 32853296. https://doi.org/10.1093/cercor/bhw089CrossRefGoogle ScholarPubMed
Moberget, T., Alnæs, D., Kaufmann, T., Doan, N. T., Córdova-Palomera, A., Norbom, L. B., … Westlye, L. T. (2019). Cerebellar gray matter volume is associated with cognitive function and psychopathology in adolescence. Biological Psychiatry, 86(1), 6575. https://doi.org/10.1016/j.biopsych.2019.01.019CrossRefGoogle ScholarPubMed
Morawetz, C., Bode, S., Derntl, B., & Heekeren, H. R. (2017). The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neuroscience & Biobehavioral Reviews, 72, 111128. https://doi.org/10.1016/j.neubiorev.2016.11.014CrossRefGoogle ScholarPubMed
Naragon-Gainey, K., McMahon, T. P., & Chacko, T. P. (2017). The structure of common emotion regulation strategies: A meta-analytic examination. Psychological Bulletin, 143(4), 384. https://doi.org/10.1037/bul0000093CrossRefGoogle ScholarPubMed
Nolen-Hoeksema, S. (2012). Emotion regulation and psychopathology: The role of gender. Annual review of clinical psychology, 8, 161187. https://doi.org/10.1146/annurev-clinpsy-032511-143109CrossRefGoogle ScholarPubMed
Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251(1), E1E24. https://doi.org/10.1111/j.1749-6632.2012.06751.xCrossRefGoogle ScholarPubMed
Park, B. Y., Paquola, C., Bethlehem, R. A., Benkarim, O., Neuroscience in Psychiatry Network (NSPN) Consortium, Mišić, B., … Bernhardt, B. C. (2022). Adolescent development of multiscale structural wiring and functional interactions in the human connectome. Proceedings of the National Academy of Sciences, 119(27), e2116673119. https://doi.org/10.1073/pnas.2116673119CrossRefGoogle ScholarPubMed
Pessoa, L. (2017). A network model of the emotional brain. Trends in Cognitive Sciences, 21(5), 357371. https://doi.org/10.1016/j.tics.2017.03.002CrossRefGoogle ScholarPubMed
Pituch, K. A., & Stevens, J. P. (2015). Applied multivariate statistics for the social sciences: Analyses with SAS and IBM's SPSS. New York, NY: Routledge.CrossRefGoogle Scholar
Romer, A. L., Hariri, A. R., & Strauman, T. J. (2021a). Regulatory focus and the p factor: Evidence for self-regulatory dysfunction as a transdiagnostic feature of general psychopathology. Journal of Psychiatric Research, 137, 178185. https://doi.org/10.1016/j.jpsychires.2021.02.051CrossRefGoogle Scholar
Romer, A. L., Knodt, A. R., Houts, R., Brigidi, B. D., Moffitt, T. E., Caspi, A., & Hariri, A. R. (2018). Structural alterations within cerebellar circuitry are associated with general liability for common mental disorders. Molecular Psychiatry, 23(4), 10841090. https://doi.org/10.1038/mp.2017.57CrossRefGoogle ScholarPubMed
Romer, A. L., Knodt, A. R., Sison, M. L., Ireland, D., Houts, R., Ramrakha, S., … Hariri, A. R. (2021b). Replicability of structural brain alterations associated with general psychopathology: Evidence from a population-representative birth cohort. Molecular Psychiatry, 26(8), 38393846. https://doi.org/10.1038/s41380-019-0621-zCrossRefGoogle ScholarPubMed
Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X., Constable, R. T., & Chun, M. M. (2016). A neuromarker of sustained attention from whole-brain functional connectivity. Nature Neuroscience, 19(1), 165171. https://doi.org/10.1038/nn.4179CrossRefGoogle ScholarPubMed
Rosenberg, M. D., Scheinost, D., Greene, A. S., Avery, E. W., Kwon, Y. H., Finn, E. S., … Chun, M. M. (2020). Functional connectivity predicts changes in attention observed across minutes, days, and months. Proceedings of the National Academy of Sciences, 117(7), 37973807. https://doi.org/10.1073/pnas.1912226117CrossRefGoogle ScholarPubMed
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 10591069. https://doi.org/10.1016/j.neuroimage.2009.10.003CrossRefGoogle ScholarPubMed
Sakiris, N., & Berle, D. (2019). A systematic review and meta-analysis of the Unified Protocol as a transdiagnostic emotion regulation based intervention. Clinical Psychology Review, 72, 101751. https://doi.org/10.1016/j.cpr.2019.101751CrossRefGoogle ScholarPubMed
Sarwar, T., Tian, Y., Yeo, B. T., Ramamohanarao, K., & Zalesky, A. (2021). Structure-function coupling in the human connectome: A machine learning approach. Neuroimage, 226, 117609. https://doi.org/10.1016/j.neuroimage.2020.117609CrossRefGoogle ScholarPubMed
Scult, M. A., Knodt, A. R., Swartz, J. R., Brigidi, B. D., & Hariri, A. R. (2017). Thinking and feeling: Individual differences in habitual emotion regulation and stress-related mood are associated with prefrontal executive control. Clinical Psychological Science, 5(1), 150157. https://doi.org/10.1177/2167702616654688CrossRefGoogle ScholarPubMed
Shafir, R., Schwartz, N., Blechert, J., & Sheppes, G. (2015). Emotional intensity influences pre-implementation and implementation of distraction and reappraisal. Social Cognitive and Affective Neuroscience, 10(10), 13291337. https://doi.org/10.1093/scan/nsv022CrossRefGoogle ScholarPubMed
Shafir, R., Thiruchselvam, R., Suri, G., Gross, J. J., & Sheppes, G. (2016). Neural processing of emotional-intensity predicts emotion regulation choice. Social Cognitive and Affective Neuroscience, 11(12), 18631871. https://doi.org/10.1093/scan/nsw114CrossRefGoogle ScholarPubMed
Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M. D., Chun, M. M., Papademetris, X., & Constable, R. T. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12(3), 506518. https://doi.org/10.1038/nprot.2016.178CrossRefGoogle ScholarPubMed
Shen, X., Tokoglu, F., Papademetris, X., & Constable, R. T. (2013). Groupwise whole-brain parcellation from resting-state fMRI data for network node identification. Neuroimage, 82, 403415. https://doi.org/10.1016/j.neuroimage.2013.05.081CrossRefGoogle Scholar
Sheppes, G., Scheibe, S., Suri, G., & Gross, J. J. (2011). Emotion-regulation choice. Psychological Science, 22(11), 13911396. doi: 10.1177/0956797611418350CrossRefGoogle ScholarPubMed
Sheppes, G., Suri, G., & Gross, J. J. (2015). Emotion regulation and psychopathology. Annual Review of Clinical Psychology, 11, 379405. https://doi.org/10.1146/annurev-clinpsy-032814-112739CrossRefGoogle ScholarPubMed
Silvers, J. A. (2022). Adolescence as a pivotal period for emotion regulation development. Current Opinion in Psychology, 44, 258263. https://doi.org/10.1016/j.copsyc.2021.09.023CrossRefGoogle ScholarPubMed
Silvers, J. A., & Moreira, J. F. G. (2019). Capacity and tendency: A neuroscientific framework for the study of emotion regulation. Neuroscience Letters, 693, 3539. https://doi.org/10.1016/j.neulet.2017.09.017CrossRefGoogle Scholar
Sloan, E., Hall, K., Moulding, R., Bryce, S., Mildred, H., & Staiger, P. K. (2017). Emotion regulation as a transdiagnostic treatment construct across anxiety, depression, substance, eating and borderline personality disorders: A systematic review. Clinical Psychology Review, 57, 141163. https://doi.org/10.1016/j.cpr.2017.09.002CrossRefGoogle ScholarPubMed
Smith, R., & Lane, R. D. (2015). The neural basis of one's own conscious and unconscious emotional states. Neuroscience & Biobehavioral Reviews, 57, 129. https://doi.org/10.1016/j.neubiorev.2015.08.003CrossRefGoogle ScholarPubMed
Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E., Glasser, M. F., … Miller, K. L. (2015). A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience, 18(11), 15651567. https://doi.org/10.1038/nn.4125CrossRefGoogle ScholarPubMed
Sporns, O. (2011). The human connectome: A complex network. Annals of the New York Academy of Sciences, 1224(1), 109125. https://doi.org/10.1111/j.1749-6632.2010.05888.xCrossRefGoogle ScholarPubMed
Suárez, L. E., Markello, R. D., Betzel, R. F., & Misic, B. (2020). Linking structure and function in macroscale brain networks. Trends in Cognitive Sciences, 24(4), 302315. https://doi.org/10.1016/j.tics.2020.01.008CrossRefGoogle ScholarPubMed
Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics. Needham Heights, MA: Allyn & Bacon.Google Scholar
Taylor, P. A., & Saad, Z. S. (2013). FATCAT:(an efficient) functional and tractographic connectivity analysis toolbox. Brain Connectivity, 3(5), 523535. https://doi.org/10.1089/brain.2013.0154CrossRefGoogle ScholarPubMed
Tejavibulya, L., Rolison, M., Gao, S., Liang, Q., Peterson, H., Dadashkarimi, J., … Scheinost, D. (2022). Predicting the future of neuroimaging predictive models in mental health. Molecular Psychiatry, 27(8), 31293137. https://doi.org/10.1038/s41380-022-01635-2CrossRefGoogle ScholarPubMed
Thompson, R. A. (1991). Emotional regulation and emotional development. Educational Psychology Review, 3, 269307. https://doi.org/10.1007/BF01319934CrossRefGoogle Scholar
Tingley, D., Yamamoto, T., Hirose, K., Keele, L., & Imai, K. (2014). Mediation: R package for causal mediation analysis. https://CRAN.R-project.org/package=mediation. Accessed 11 April 2023.Google Scholar
Underwood, R., Tolmeijer, E., Wibroe, J., Peters, E., & Mason, L. (2021). Networks underpinning emotion: A systematic review and synthesis of functional and effective connectivity. Neuroimage, 243, 118486. https://doi.org/10.1016/j.neuroimage.2021.118486CrossRefGoogle ScholarPubMed
Wang, H. T., Smallwood, J., Mourao-Miranda, J., Xia, C. H., Satterthwaite, T. D., Bassett, D. S., & Bzdok, D. (2020). Finding the needle in a high-dimensional haystack: Canonical correlation analysis for neuroscientists. Neuroimage, 216, 116745. https://doi.org/10.1016/j.neuroimage.2020.116745CrossRefGoogle Scholar
Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063. https://doi.org/10.1037/0022-3514.54.6.1063CrossRefGoogle ScholarPubMed
Weissman, D. G., Bitran, D., Miller, A. B., Schaefer, J. D., Sheridan, M. A., & McLaughlin, K. A. (2019). Difficulties with emotion regulation as a transdiagnostic mechanism linking child maltreatment with the emergence of psychopathology. Development and Psychopathology, 31(3), 899915. https://doi.org/10.1017/S0954579419000348CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 4976. https://doi.org/10.1146/annurev-clinpsy-032511-143049CrossRefGoogle ScholarPubMed
Wirtz, C. M., Hofmann, S. G., Riper, H., & Berking, M. (2014). Emotion regulation predicts anxiety over a five-year interval: A cross-lagged panel analysis. Depression and Anxiety, 31(1), 8795. https://doi.org/10.1002/da.22198CrossRefGoogle Scholar
Wu, H., Liu, R., Zhou, J., Feng, L., Wang, Y., Chen, X., … Wang, G. (2022). Prediction of remission among patients with a major depressive disorder based on the resting-state functional connectivity of emotion regulation networks. Translational Psychiatry, 12(1), 391. https://doi.org/10.1038/s41398-022-02152-0CrossRefGoogle Scholar
Xia, C. H., Ma, Z., Ciric, R., Gu, S., Betzel, R. F., Kaczkurkin, A. N., … Satterthwaite, T. D. (2018). Linked dimensions of psychopathology and connectivity in functional brain networks. Nature Communications, 9(1), 3003. https://doi.org/10.1038/s41467-018-05317-yCrossRefGoogle ScholarPubMed
Xu, S., Zhang, Z., Li, L., Zhou, Y., Lin, D., Zhang, M., … Liang, Z. (2023). Functional connectivity profiles of the default mode and visual networks reflect temporal accumulative effects of sustained naturalistic emotional experience. Neuroimage, 269, 119941. https://doi.org/10.1016/j.neuroimage.2023.119941CrossRefGoogle ScholarPubMed
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12(6), 11001122. https://doi.org/10.1177/1745691617693393CrossRefGoogle ScholarPubMed
You, Y., Brown, J., & Li, W. (2021). Human sensory cortex contributes to the long-term storage of aversive conditioning. Journal of Neuroscience, 41(14), 32223233. https://doi.org/10.1523/JNEUROSCI.2325-20.2021CrossRefGoogle Scholar
Young, K. S., Sandman, C. F., & Craske, M. G. (2019). Positive and negative emotion regulation in adolescence: Links to anxiety and depression. Brain Sciences, 9(4), 76. https://doi.org/10.3390/brainsci9040076CrossRefGoogle ScholarPubMed
Zhou, F., Zhao, W., Qi, Z., Geng, Y., Yao, S., Kendrick, K. M., … Becker, B. (2021). A distributed fMRI-based signature for the subjective experience of fear. Nature Communications, 12(1), 6643. https://doi.org/10.1038/s41467-021-26977-3CrossRefGoogle ScholarPubMed
Supplementary material: File

Kim and Kim supplementary material

Kim and Kim supplementary material
Download Kim and Kim supplementary material(File)
File 6.7 MB