Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-12T09:18:27.133Z Has data issue: false hasContentIssue false

Differentiating the abnormalities of social and monetary reward processing associated with depressive symptoms

Published online by Cambridge University Press:  04 November 2020

Dandan Zhang
Affiliation:
Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China School of Psychology, Shenzhen University, Shenzhen 518060, China
Junshi Shen
Affiliation:
School of Psychology, Shenzhen University, Shenzhen 518060, China
Rong Bi
Affiliation:
School of Psychology, Shenzhen University, Shenzhen 518060, China
Yueyao Zhang
Affiliation:
School of Psychology, Shenzhen University, Shenzhen 518060, China
Fang Zhou
Affiliation:
School of Psychology, Shenzhen University, Shenzhen 518060, China
Chunliang Feng
Affiliation:
Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China Key Laboratory of Brain, Cognition and Education Sciences, South China Normal University, Ministry of Education, Guangzhou 510631, China
Ruolei Gu*
Affiliation:
CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
*
Author for correspondence: Ruolei Gu, E-mail: gurl@psych.ac.cn

Abstract

Background

Reward dysfunction is a major dimension of depressive symptomatology, but it remains obscure if that dysfunction varies across different reward types. In this study, we focus on the abnormalities in anticipatory/consummatory processing of monetary and social reward associated with depressive symptoms.

Methods

Forty participants with depressive symptoms and forty normal controls completed the monetary incentive delay (MID) and social incentive delay (SID) tasks with event-related potential (ERP) recording.

Results

In the SID but not the MID task, both the behavioral hit rate and the ERP component contingent negative variation (CNV; indicating reward anticipation) were sensitive to the interaction between the grouping factor and reward magnitude; that is, the depressive group showed a lower hit rate and a smaller CNV to large-magnitude (but not small-magnitude) social reward cues compared to the control group. Further, these two indexes were correlated with each other. Meanwhile, the ERP components feedback-related negativity and P3 (indicating reward consumption) were sensitive to the main effect of depression across the MID and SID tasks, though this effect was more prominent in the SID task.

Conclusions

Overall, we suggest that depressive symptoms are associated with deficits in both the reward anticipation and reward consumption stages, particularly for social rewards. These findings have a potential to characterize the profile of functional impairment that comprises and maintains depression.

Type
Original Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Admon, R., & Pizzagalli, D. A. (2015). Dysfunctional reward processing in depression. Current Opinion in Psychology, 4, 114118. doi: 10.1016/j.copsyc.2014.12.011.CrossRefGoogle ScholarPubMed
Ait Oumeziane, B., Jones, O., & Foti, D. (2019). Neural sensitivity to social and monetary reward in depression: Clarifying general and domain-specific deficits. Frontiers in Behavioral Neuroscience, 13, 199. doi: 10.3389/fnbeh.2019.00199.CrossRefGoogle ScholarPubMed
Ait Oumeziane, B., Schryer-Praga, J., & Foti, D. (2017). Why don't they ‘like’ me more?”: Comparing the time courses of social and monetary reward processing. Neuropsychologia, 107, 4859. doi: 10.1016/j.neuropsychologia.2017.11.001.CrossRefGoogle ScholarPubMed
Allen, N. B., & Badcock, P. B. (2003). The social risk hypothesis of depressed mood: Evolutionary, psychosocial, and neurobiological perspectives. Psychological Bulletin, 129(6), 887913. doi: 10.1037/0033-2909.129.6.887.CrossRefGoogle ScholarPubMed
Allen, J. P., Insabella, G., Porter, M. R., Smith, F. D., Land, D., & Phillips, N. (2006). A social-interactional model of the development of depressive symptoms in adolescence. Journal of Consulting and Clinical Psychology, 74(1), 5565. doi: 10.1037/0022-006X.74.1.55.CrossRefGoogle ScholarPubMed
Arrondo, G., Segarra, N., Metastasio, A., Ziauddeen, H., Spencer, J., Reinders, N. R., … Murray, G. K. (2015). Reduction in ventral striatal activity when anticipating a reward in depression and schizophrenia: A replicated cross-diagnostic finding. Frontiers in Psychology, 6, 1280. doi: 10.3389/fpsyg.2015.01280.CrossRefGoogle ScholarPubMed
Badcock, P., & Allen, N. (2003). Adaptive social reasoning in depressed mood and depressive vulnerability. Cognition & Emotion, 17(4), 647670. doi: 10.1080/02699930302299.CrossRefGoogle ScholarPubMed
Balodis, I. M., & Potenza, M. N. (2014). Anticipatory reward processing in addicted populations: A focus on the monetary incentive delay task. Biological Psychiatry, 77(5), 434444. doi: 10.1016/j.biopsych.2014.08.020.CrossRefGoogle ScholarPubMed
Barch, D. M., Whalen, D., Gilbert, K., Kelly, D., Kappenman, E. S., Hajcak, G., & Luby, J. L. (2019). Neural indicators of anhedonia: Predictors and mechanisms of treatment change in a randomized clinical trial in early childhood depression. Biological Psychiatry, 85(10), 863871. doi: 10.1016/j.biopsych.2018.11.021.CrossRefGoogle Scholar
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory—second edition. San Antonio, TX: The Psychological Corporation.Google Scholar
Becker, L., Smith, D. T., & Schenk, T. (2017). Investigating the familiarity effect in texture segmentation by means of event-related brain potentials. Vision Research, 140, 120132. doi: 10.1016/j.visres.2017.08.002.CrossRefGoogle ScholarPubMed
Bishop, S. J., & Gagne, C. (2018). Anxiety, depression, and decision making: A computational perspective. Annual Review of Neuroscience, 41, 371388. doi: 10.1146/annurev-neuro-080317-062007.CrossRefGoogle ScholarPubMed
Boehm, U., van Maanen, L., Forstmann, B., & van Rijn, H. (2014). Trial-by-trial fluctuations in CNV amplitude reflect anticipatory adjustment of response caution. Neuroimage, 96, 95105. doi: 10.1016/j.neuroimage.2014.03.063.CrossRefGoogle ScholarPubMed
Bracht, T., Linden, D., & Keedwell, P. (2015). A review of white matter microstructure alterations of pathways of the reward circuit in depression. Journal of Affective Disorders, 187, 4553. doi: 10.1016/j.jad.2015.06.041.CrossRefGoogle ScholarPubMed
Bradley, B. P., Mogg, K., & Millar, N. (1996). Implicit memory bias in clinical and non-clinical depression. Behaviour Research and Therapy, 34(11–12), 865879. doi: 10.1016/s0005-7967(96)00074-5.CrossRefGoogle ScholarPubMed
Brinkmann, K., Franzen, J., Rossier, C., & Gendolla, G. H. (2014). I don't care about others’ approval: Dysphoric individuals show reduced effort mobilization for obtaining a social reward. Motivation and Emotion, 38(6), 790801. doi: 10.1007/s11031-014-9437-y.CrossRefGoogle Scholar
Brush, C. J., Ehmann, P. J., Hajcak, G., Selby, E. A., & Alderman, B. L. (2018). Using multilevel modeling to examine blunted neural responses to reward in major depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(12), 10321039. doi: 10.1016/j.bpsc.2018.04.003.Google ScholarPubMed
Burani, K., Mulligan, E. M., Klawohn, J., Luking, K. R., Nelson, B. D., & Hajcak, G. (2019). Longitudinal increases in reward-related neural activity in early adolescence: Evidence from event-related potentials (ERPs). Developmental Cognitive Neuroscience, 36, 100620. doi: 10.1016/j.dcn.2019.100620.CrossRefGoogle Scholar
Burkhouse, K. L., Gorka, S. M., Klumpp, H., Kennedy, A. E., Karich, S., Francis, J., … Phan, K. L. (2018). Neural responsiveness to reward as an index of depressive symptom change following cognitive-behavioral therapy and selective serotonin reuptake inhibitor treatment. Journal of Clinical Psychiatry, 79(4), 17m11836. doi: 10.4088/JCP.17m11836.Google Scholar
Carl, H., Walsh, E., Eisenlohr-Moul, T., Minkel, J., Crowther, A., Moore, T., Gibbs, D., … Smoski, M. J. (2016). Sustained anterior cingulate cortex activation during reward processing predicts response to psychotherapy in major depressive disorder. Journal of Affective Disorders, 203, 204212. doi: 10.1016/j.jad.2016.06.005.CrossRefGoogle ScholarPubMed
Chronaki, G., Soltesz, F., Benikos, N., & Sonuga-Barke, E. J. S. (2017). An electrophysiological investigation of reinforcement effects in attention deficit/hyperactivity disorder: Dissociating cue sensitivity from down-stream effects on target engagement and performance. Developmental Cognitive Neuroscience, 28, 1220. doi: 10.1016/j.dcn.2017.10.003.CrossRefGoogle ScholarPubMed
Conde, T., Goncalves, O. F., & Pinheiro, A. P. (2015). Paying attention to my voice or yours: An ERP study with words. Biological Psychology, 111, 4052. doi: 10.1016/j.biopsycho.2015.07.014.CrossRefGoogle ScholarPubMed
Copeland, W. E., Wolke, D., Angold, A., & Costello, E. J. (2013). Adult psychiatric outcomes of bullying and being bullied by peers in childhood and adolescence. JAMA Psychiatry, 70(4), 419426. doi: 10.1001/jamapsychiatry.2013.504.CrossRefGoogle ScholarPubMed
Cycowicz, Y. M. (2019). Orienting and memory to unexpected and/or unfamiliar visual events in children and adults. Developmental Cognitive Neuroscience, 36, 100615. doi: 10.1016/j.dcn.2019.100615.CrossRefGoogle ScholarPubMed
Davey, C. G., Yucel, M., & Allen, N. B. (2008). The emergence of depression in adolescence: Development of the prefrontal cortex and the representation of reward. Neuroscience and Biobehavioral Reviews, 32(1), 119. doi: 10.1016/j.neubiorev.2007.04.016.CrossRefGoogle Scholar
Distefano, A., Jackson, F., Levinson, A. R., Infantolino, Z. P., Jarcho, J. M., & Nelson, B. D. (2018). A comparison of the electrocortical response to monetary and social reward. Social Cognitive and Affective Neuroscience, 13(3), 247255. doi: 10.1093/scan/nsy006.CrossRefGoogle ScholarPubMed
Eckblad, M. L., Chapman, L. J., Chapman, J. P., & Mishlove, M. (1982). The revised social anhedonia scale. In Unpublished test copies available from T.R. Kwapil. Champaign, IL: UIUC Department of Psychology.Google Scholar
Ehnvall, A., Mitchell, P. B., Hadzi-Pavlovic, D., Parker, G., Frankland, A., Loo, C. M., … Perich, T. (2014). Rejection sensitivity and pain in bipolar versus unipolar depression. Bipolar Disorders 16(2), 190198. doi: 10.1111/bdi.12147.CrossRefGoogle ScholarPubMed
Elbert, T., Ulrich, R., Rockstroh, B., & Lutzenberger, W. (1991). The processing of temporal intervals reflected by CNV-like brain potentials. Psychophysiology, 28(6), 648–55. doi: 10.1111/j.1469-8986.1991.tb01009.x.CrossRefGoogle ScholarPubMed
Enneking, V., Krussel, P., Zaremba, D., Dohm, K., Grotegerd, D., Forster, K., … Dannlowski, U. (2019). Social anhedonia in major depressive disorder: A symptom-specific neuroimaging approach. Neuropsychopharmacology, 44(5), 883889. doi: 10.1038/s41386-018-0283-6.CrossRefGoogle ScholarPubMed
Epstein, J., Pan, H., Kocsis, J. H., Yang, Y., Butler, T., Chusid, J., … Silbersweig, D. A. (2006). Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. American Journal of Psychiatry, 163(10), 17841790. doi: 10.1176/ajp.2006.163.10.1784.CrossRefGoogle ScholarPubMed
Eshel, N., & Roiser, J. P. (2010). Reward and punishment processing in depression. Biological Psychiatry, 68(2), 118124. doi: 10.1016/j.biopsych.2010.01.027.CrossRefGoogle ScholarPubMed
Ethridge, P., Kujawa, A., Dirks, M. A., Arfer, K. B., Kessel, E. M., Klein, D. N., & Weinberg, A. (2017). Neural responses to social and monetary reward in early adolescence and emerging adulthood. Psychophysiology, 54(12), 17861799. doi: 10.1111/psyp.12957.CrossRefGoogle ScholarPubMed
Fehr, E., & Camerer, C. F. (2007). Social neuroeconomics: The neural circuitry of social preferences. Trends in Cognitive Science, 11(10), 419427. doi: 10.1016/j.tics.2007.09.002.CrossRefGoogle ScholarPubMed
Feng, X., Gu, R., Liang, F., Broster, L. S., Liu, Y., Zhang, D., & Luo, Y. J. (2015). Depressive states amplify both upward and downward counterfactual thinking. International Journal of Psychophysiology, 97(2), 9398. doi: 10.1016/j.ijpsycho.2015.04.016.CrossRefGoogle ScholarPubMed
First, M. B., Gibbon, M., & Spitzer, R. L. (2002). Structured clinical interview for DSM-IV-TR Axis I disorders, Research Version, Non-Patient edition (SCID-I/NP). (ed. N. Y. S. P. Institute). Biometrics Research Department: New York, NY.Google Scholar
Flett, G. L., Vredenburg, K., & Krames, L. (1997). The continuity of depression in clinical and nonclinical samples. Psychological Bulletin, 121(3), 395416. doi: 10.1037/0033-2909.121.3.395.CrossRefGoogle ScholarPubMed
Flores, A., Munte, T., & Donamayor, N. (2015). Event-related EEG responses to anticipation and delivery of monetary and social reward. Biological Psychology, 109, 1019. doi: 10.1016/j.biopsycho.2015.04.005.CrossRefGoogle ScholarPubMed
Forbes, E. E. (2009). Where's the fun in that? Broadening the focus on reward function in depression. Biological Psychiatry, 66(3), 199200. doi: 10.1016/j.biopsych.2009.05.001.CrossRefGoogle ScholarPubMed
Forbes, E. E., & Dahl, R. E. (2012). Research review: Altered reward function in adolescent depression: What, when and how? Journal of Child Psychology and Psychiatry, 53(1), 315. doi: 10.1111/j.1469-7610.2011.02477.x.CrossRefGoogle Scholar
Forbes, E. E., Hariri, A. R., Martin, S. L., Silk, J. S., Moyles, D. L., Fisher, P. M., … Dahl, R. E. (2009). Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. American Journal of Psychiatry, 166(1), 6473. doi: 10.1176/appi.ajp.2008.07081336.CrossRefGoogle ScholarPubMed
Forbes, E. E., Shaw, D. S., & Dahl, R. E. (2007). Alterations in reward-related decision making in boys with recent and future depression. Biological Psychiatry, 61(5), 633639. doi: 10.1016/j.biopsych.2006.05.026.CrossRefGoogle ScholarPubMed
Foti, D., Carlson, J. M., Sauder, C. L., & Proudfit, G. H. (2014). Reward dysfunction in major depression: Multimodal neuroimaging evidence for refining the melancholic phenotype. Neuroimage, 101, 50–8. doi: 10.1016/j.neuroimage.2014.06.058.CrossRefGoogle ScholarPubMed
Foti, D., & Hajcak, G. (2009). Depression and reduced sensitivity to non-rewards versus rewards: Evidence from event-related potentials. Biological Psychology, 81(1), 18. doi: 10.1016/j.biopsycho.2008.12.004.CrossRefGoogle ScholarPubMed
Frazier, T. W., Strauss, M., Klingemier, E. W., Zetzer, E. E., Hardan, A. Y., Eng, C., & Youngstrom, E. A. (2017). A meta-analysis of gaze differences to social and nonsocial information between individuals with and without autism. Journal of the American Academy of Child & Adolescent Psychiatry, 56(7), 546555. doi: 10.1016/j.jaac.2017.05.005.CrossRefGoogle ScholarPubMed
Gangadhar, B. N., Ancy, J., Janakiramaiah, N., & Umapathy, C. (1993). P300 amplitude in non-bipolar, melancholic depression. Journal of Affective Disorders, 28(1), 5760. doi: 10.1016/0165-0327(93)90077-w.CrossRefGoogle ScholarPubMed
Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science (New York, N.Y.), 295(5563), 22792282. doi: 10.1126/science.1066893.CrossRefGoogle ScholarPubMed
George, L. K., Blazer, D. G., Hughes, D. C., & Fowler, N. (1989). Social support and the outcome of major depression. British Journal of Psychiatry, 154, 478485. doi: 10.1192/bjp.154.4.478.CrossRefGoogle ScholarPubMed
Goerlich, K. S., Votinov, M., Lammertz, S. E., Winkler, L., Spreckelmeyer, K. N., … Gossen, A. (2017). Effects of alexithymia and empathy on the neural processing of social and monetary rewards. Brain Structure and Function, 222(5), 22352250. doi: 10.1007/s00429-016-1339-1.CrossRefGoogle ScholarPubMed
Gonzalez-Gadea, M. L., Sigman, M., Rattazzi, A., Lavin, C., Rivera-Rei, A., Marino, J., … Ibanez, A. (2016). Neural markers of social and monetary rewards in children with attention-deficit/hyperactivity disorder and autism spectrum disorder. Scientific Reports, 6, 30588. doi: 10.1038/srep30588.CrossRefGoogle ScholarPubMed
Gotlib, I. H. (1998). EEG Alpha asymmetry, depression, and cognitive functioning. Cognition & Emotion, 12(3), 449478. doi: doi:10.1080/026999398379673.CrossRefGoogle Scholar
Greenberg, T., Chase, H. W., Almeida, J. R., Stiffler, R., Zevallos, C. R., Aslam, H. A., … Phillips, M. L. (2015). Moderation of the relationship between reward expectancy and prediction error-related ventral striatal reactivity by anhedonia in unmedicated major depressive disorder: Findings from the EMBARC study. American Journal of Psychiatry, 172(9), 881891. doi: 10.1176/appi.ajp.2015.14050594.CrossRefGoogle ScholarPubMed
Greimel, E., Bakos, S., Landes, I., Tollner, T., Bartling, J., Kohls, G., & Schulte-Korne, G. (2018). Sex differences in the neural underpinnings of social and monetary incentive processing during adolescence. Cognitive Affective & Behavioral Neuroscience, 18(2), 296312. doi: 10.3758/s13415-018-0570-z.CrossRefGoogle ScholarPubMed
Gu, R., Ao, X., Mo, L., & Zhang, D. (2020). Neural correlates of negative expectancy and impaired social feedback processing in social anxiety. Social Cognitive and Affectitve Neuroscience, 15(3), 285291. doi: 10.1093/scan/nsaa038.CrossRefGoogle ScholarPubMed
Gu, R., Huang, W., Camilleri, J., Xu, P., Wei, P., Eickhoff, S. B., & Feng, C. (2019). Love is analogous to money in human brain: Coordinate-based and functional connectivity meta-analyses of social and monetary reward anticipation. Neuroscience & Biobehavioral Reviews, 100, 108128. doi: 10.1016/j.neubiorev.2019.02.017.CrossRefGoogle ScholarPubMed
Gu, R., Jiang, Y., Kiser, S., Luo, Y. J., & Kelly, T. H. (2017). Impulsive personality dimensions are associated with altered behavioral performance and neural responses in the Monetary Incentive Delay Task. Neuropsychologia, 103, 5968. doi: 10.1016/j.neuropsychologia.2017.07.013.CrossRefGoogle ScholarPubMed
Gu, R., Lei, Z., Broster, L., Wu, T., Jiang, Y., & Luo, Y. J. (2011). Beyond valence and magnitude: A flexible evaluative coding system in the brain. Neuropsychologia, 49(14), 38913897. doi: 10.1016/j.neuropsychologia.2011.10.006.CrossRefGoogle Scholar
Gunaydin, L. A., Grosenick, L., Finkelstein, J. C., Kauvar, I. V., Fenno, L. E., Adhikari, A., … Deisseroth, K. (2014). Natural neural projection dynamics underlying social behavior. Cell, 157(7), 1535–51. doi: 10.1016/j.cell.2014.05.017.CrossRefGoogle ScholarPubMed
Hagele, C., Schlagenhauf, F., Rapp, M., Sterzer, P., Beck, A., Bermpohl, F., … Heinz, A. (2015). Dimensional psychiatry: Reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology, 232(2), 331341. doi: 10.1007/s00213-014-3662-7.CrossRefGoogle ScholarPubMed
Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2007). It's worse than you thought: The feedback negativity and violations of reward prediction in gambling tasks. Psychophysiology, 44(6), 905912. doi: 10.1111/j.1469-8986.2007.00567.x.CrossRefGoogle ScholarPubMed
Hanewald, B., Behrens, F., Gruppe, H., Sammer, G., Gallhofer, B., Krach, S., & Iffland, J. R. (2017). Anticipation of social and monetary rewards in schizophrenia. Journal of Psychiatry, 20(3), 17. doi: 10.4172/2378-5756.1000410.CrossRefGoogle Scholar
Hardin, M. G., Schroth, E., Pine, D. S., & Ernst, M. (2007). Incentive-related modulation of cognitive control in healthy, anxious, and depressed adolescents: Development and psychopathology related differences. Journal of Child Psychology and Psychiatry, 48(5), 446454. doi: 10.1111/j.1469-7610.2006.01722.x.CrossRefGoogle ScholarPubMed
He, Z., Liu, Z., Zhao, J., Elliott, R., & Zhang, D. (2019a). Improving emotion regulation of social exclusion in depression-prone individuals: A tDCS study targeting right VLPFC. Psychological Medicine, 112. doi: 10.1017/S0033291719002915.Google Scholar
He, Z., Zhang, D., Muhlert, N., & Elliott, R. (2019b). Neural substrates for anticipation and consumption of social and monetary incentives in depression. Social Cognitive and Affective Neuroscience, 14(8), 815826. doi: 10.1093/scan/nsz061.CrossRefGoogle Scholar
Heller, A. S., Johnstone, T., Shackman, A. J., Light, S. N., Peterson, M. J., Kolden, G. G., … Davidson, R. J. (2009). Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 2244522450. doi: 10.1073/pnas.0910651106.CrossRefGoogle ScholarPubMed
Henriques, J. B., & Davidson, R. J. (2000). Decreased responsiveness to reward in depression. Cognition & Emotion, 14, 711724. doi: 10.1080/02699930050117684.CrossRefGoogle Scholar
Hirschfeld, R. M., Montgomery, S. A., Keller, M. B., Kasper, S., Schatzberg, A. F., Moller, H. J., … Bourgeois, M. (2000). Social functioning in depression: A review. Journal of Clinical Psychiatry, 61(4), 268275. doi: 10.4088/JCP.v61n0405.CrossRefGoogle ScholarPubMed
Holroyd, C. B., & Krigolson, O. E. (2007). Reward prediction error signals associated with a modified time estimation task. Psychophysiology, 44(6), 913917. doi: 10.1111/j.1469-8986.2007.00561.x.CrossRefGoogle ScholarPubMed
Holroyd, C. B., Pakzad-Vaezi, K. L., & Krigolson, O. E. (2008). The feedback correct-related positivity: Sensitivity of the event-related brain potential to unexpected positive feedback. Psychophysiology, 45(5), 688697. doi: 10.1111/j.1469-8986.2008.00668.x.CrossRefGoogle ScholarPubMed
Horowitz, J. L., & Garber, J. (2006). The prevention of depressive symptoms in children and adolescents: A meta-analytic review. Journal of Consulting and Clinical Psychology, 74(5), 401415. doi: doi:10.1037/0022-006X.74.3.401.CrossRefGoogle ScholarPubMed
Hsu, D. T., Sanford, B. J., Meyers, K. K., Love, T. M., Hazlett, K. E., Walker, S. J., … Zubieta, J. K. (2015). It still hurts: Altered endogenous opioid activity in the brain during social rejection and acceptance in major depressive disorder. Molecular Psychiatry, 20(2), 193200. doi: 10.1038/mp.2014.185.CrossRefGoogle ScholarPubMed
Husain, M., & Roiser, J. P. (2018). Neuroscience of apathy and anhedonia: A transdiagnostic approach. Nature Review Neuroscience, 19(8), 470484. doi: 10.1038/s41583-018-0029-9.CrossRefGoogle ScholarPubMed
Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58(2), 284294. doi: 10.1016/j.neuron.2008.03.020.CrossRefGoogle ScholarPubMed
Jazbec, S., Hardin, M. G., Schroth, E., McClure, E., Pine, D. S., & Ernst, M. (2006). Age-related influence of contingencies on a saccade task. Experimental Brain Research, 174(4), 754762. doi: 10.1007/s00221-006-0520-9.CrossRefGoogle ScholarPubMed
Jin, J., Sabharwal, A., Infantolino, Z. P., Jarcho, J. M., & Nelson, B. D. (2019). Time-frequency delta activity to social feedback demonstrates differential associations with depression and social anxiety symptoms. Frontiers in Behavioral Neuroscience, 13, 189. doi: 10.3389/fnbeh.2019.00189.CrossRefGoogle ScholarPubMed
Kalcher, J., & Pfurtscheller, G. (1995). Discrimination between phase-locked and non-phase-locked event-related EEG activity. Electroencephalography and Clinical Neurophysiology, 94(5), 381384. doi: 10.1016/0013-4694(95)00040-6.CrossRefGoogle ScholarPubMed
Karaaslan, F., Gonul, A. S., Oguz, A., Erdinc, E., & Esel, E. (2003). P300 changes in major depressive disorders with and without psychotic features. Journal of Affective Disorders, 73(3), 283287. doi: 10.1016/s0165-0327(01)00477-3.CrossRefGoogle ScholarPubMed
Keedwell, P. A., Andrew, C., Williams, S. C., Brammer, M. J., & Phillips, M. L. (2005). The neural correlates of anhedonia in major depressive disorder. Biological Psychiatry, 58(11), 843853. doi: doi:10.1016/j.biopsych.2005.05.019.CrossRefGoogle ScholarPubMed
Kendler, K. S., Hettema, J. M., Butera, F., Gardner, C. O., & Prescott, C. A. (2003). Life event dimensions of loss, humiliation, entrapment, and danger in the prediction of onsets of major depression and generalized anxiety. Archives of General Psychiatry, 60(8), 789796. doi: 10.1001/archpsyc.60.8.789.CrossRefGoogle ScholarPubMed
Keren, H., O'Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., … & Stringaris, A. (2018). Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. American Journal of Psychiatry, 175(11), 11111120. doi: 10.1176/appi.ajp.2018.17101124.CrossRefGoogle ScholarPubMed
Klawohn, J., Burani, K., Bruchnak, A., Santopetro, N., & Hajcak, G. (2020). Reduced neural response to reward and pleasant pictures independently relate to depression. Psychological Medicine, 19. doi: 10.1017/S0033291719003659.Google ScholarPubMed
Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21(16), RC159. doi: 10.1523/JNEUROSCI.21-16-j0002.2001.CrossRefGoogle ScholarPubMed
Knutson, B., Bhanji, J. P., Cooney, R. E., Atlas, L. Y., & Gotlib, I. H. (2008). Neural responses to monetary incentives in major depression. Biological Psychiatry, 63(7), 686692. doi: 10.1016/j.biopsych.2007.07.023.CrossRefGoogle ScholarPubMed
Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage, 12(1), 20–7. doi: 10.1006/nimg.2000.0593.CrossRefGoogle ScholarPubMed
Kogler, L., Sailer, U., Derntl, B., & Pfabigan, D. M. (2017). Processing expected and unexpected uncertainty is modulated by fearless-dominance personality traits - An exploratory ERP study on feedback processing. Physiology & Behavior, 168, 7483. doi: 10.1016/j.physbeh.2016.10.016.CrossRefGoogle Scholar
Kohls, G., Peltzer, J., Herpertz-Dahlmann, B., & Konrad, K. (2009). Differential effects of social and non-social reward on response inhibition in children and adolescents. Developmental Science, 12(4), 614625. doi: 10.1111/j.1467-7687.2009.00816.x.CrossRefGoogle ScholarPubMed
Kononowicz, T. W., & Penney, T. B. (2016). The contingent negative variation (CNV): Timing isn't everything. Current Opinion in Behavioral Sciences, 8, 231237. doi: 10.1016/j.cobeha.2016.02.022.CrossRefGoogle Scholar
Kujawa, A., Kessel, E. M., Carroll, A., Arfer, K. B., & Klein, D. N. (2017). Social processing in early adolescence: Associations between neurophysiological, self-report, and behavioral measures. Biological Psychology, 128, 5562. doi: 10.1016/j.biopsycho.2017.07.001.CrossRefGoogle ScholarPubMed
Kumar, P., Waiter, G., Ahearn, T., Milders, M., Reid, I., & Steele, J. D. (2008). Abnormal temporal difference reward-learning signals in major depression. Brain, 131(Pt 8), 20842093. doi: 10.1093/brain/awn136.CrossRefGoogle ScholarPubMed
Kupferberg, A., Bicks, L., & Hasler, G. (2016). Social functioning in major depressive disorder. Neuroscience & Biobehavioral Reviews, 69, 313332. doi: 10.1016/j.neubiorev.2016.07.002.CrossRefGoogle ScholarPubMed
Landes, I., Bakos, S., Kohls, G., Bartling, J., Schulte-Korne, G., & Greimel, E. (2018). Altered neural processing of reward and punishment in adolescents with Major Depressive Disorder. Journal of Affective Disorders, 232, 2333. doi: 10.1016/j.jad.2018.01.017.CrossRefGoogle ScholarPubMed
Lee, A., Hankin, B. L., & Mermelstein, R. J. (2010). Perceived social competence, negative social interactions, and negative cognitive style predict depressive symptoms during adolescence. Journal of Clinical Child & Adolescent Psychology, 39(5), 603615. doi: 10.1080/15374416.2010.501284.CrossRefGoogle ScholarPubMed
Lee, J., Jimenez, A. M., Reavis, E. A., Horan, W. P., Wynn, J. K., & Green, M. F. (2019). Reduced neural sensitivity to social vs nonsocial reward in schizophrenia. Schizophrenia Bulletin, 45(3), 620628. doi: 10.1093/schbul/sby109.CrossRefGoogle Scholar
Lei, Y., Wang, Y., Wang, C., Wang, J., Lou, Y., & Li, H. (2019). Taking familiar others' perspectives to regulate our own emotion: An Event Related Potential study. Frontiers in Psychology, 10, 1419. doi: 10.3389/fpsyg.2019.01419.CrossRefGoogle Scholar
Lin, A., Adolphs, R., & Rangel, A. (2012). Social and monetary reward learning engage overlapping neural substrates. Social Cognitive and Affective Neuroscience, 7(3), 274281. doi: 10.1093/scan/nsr006.CrossRefGoogle ScholarPubMed
Liu, J., Gu, R., Liao, C., Lu, J., Fang, Y., Xu, P., … Cui, F. (2020). The neural mechanism of the social framing effect: Evidence from fMRI and tDCS studies. Journal of Neuroscience, 40(18), 36463656. doi: 10.1523/JNEUROSCI.1385-19.2020.CrossRefGoogle ScholarPubMed
Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35(5), 1219–36. doi: 10.1016/j.neubiorev.2010.12.012.CrossRefGoogle ScholarPubMed
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn't). Psychophysiology, 54(1), 146157. doi: 10.1111/psyp.12639.CrossRefGoogle Scholar
Luo, Y., Wu, T., Broster, L. S., Feng, C., Zhang, D., Gu, R., & Luo, Y. J. (2014). The temporal course of the influence of anxiety on fairness considerations. Psychophysiology, 51(9), 834–42. doi: 10.1111/psyp.12235.CrossRefGoogle ScholarPubMed
Macar, F., & Vidal, F. (2004). Event-related potentials as indices of time processing: A review. Journal of Psychophysiology, 18(2/3), 89104. doi: 10.1027/0269-8803.18.23.89.CrossRefGoogle Scholar
Marchand, W. R., Lee, J. N., Garn, C., Thatcher, J., Gale, P., Kreitschitz, S., … Wood, N. (2011). Striatal and cortical midline activation and connectivity associated with suicidal ideation and depression in bipolar II disorder. Journal of Affective Disorders, 133(3), 638645. doi: 10.1016/j.jad.2011.04.039.CrossRefGoogle ScholarPubMed
McCabe, C., Cowen, P. J., & Harmer, C. J. (2009). Neural representation of reward in recovered depressed patients. Psychopharmacology, 205(4), 667677. doi: 10.1007/s00213-009-1573-9.CrossRefGoogle ScholarPubMed
McCabe, C., Woffindale, C., Harmer, C. J., & Cowen, P. J. (2012). Neural processing of reward and punishment in young people at increased familial risk of depression. Biological Psychiatry, 72(7), 588594. doi: 10.1016/j.biopsych.2012.04.034.CrossRefGoogle ScholarPubMed
McFarland, B. R., & Klein, D. N. (2009). Emotional reactivity in depression: Diminished responsiveness to anticipated reward but not to anticipated punishment or to nonreward or avoidance. Depression & Anxiety, 26(2), 117122. doi: 10.1002/da.20513.CrossRefGoogle ScholarPubMed
Mesoudi, A., Whiten, A., & Dunbar, R. (2006). A bias for social information in human cultural transmission. British Journal of Psychology, 97(Pt 3), 405423. doi: 10.1348/000712605X85871.CrossRefGoogle ScholarPubMed
Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event-related brain potentials following incorrect feedback in a time-estimation task: Evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9(6), 788798. doi: 10.1162/jocn.1997.9.6.788.CrossRefGoogle Scholar
Monk, C. S., Klein, R. G., Telzer, E. H., Schroth, E. A., Mannuzza, S., Moulton, J. L., … Ernst, M. (2008). Amygdala and nucleus accumbens activation to emotional facial expressions in children and adolescents at risk for major depression. American Journal of Psychiatry, 165(1), 9098. doi: 10.1176/appi.ajp.2007.06111917.CrossRefGoogle ScholarPubMed
Monroe, S. M., Rohde, P., Seeley, J. R., & Lewinsohn, P. M. (1999). Life events and depression in adolescence: Relationship loss as a prospective risk factor for first onset of major depressive disorder. Journal of Abnormal Psychology, 108(4), 606614. doi: 10.1037//0021-843x.108.4.606.CrossRefGoogle Scholar
Morelli, S. A., Sacchet, M. D., & Zaki, J. (2015). Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. Neuroimage, 112, 244253. doi: 10.1016/j.neuroimage.2014.12.056.CrossRefGoogle ScholarPubMed
Morgan, J. K., Olino, T. M., McMakin, D. L., Ryan, N. D., & Forbes, E. E. (2013). Neural response to reward as a predictor of increases in depressive symptoms in adolescence. Neurobiology of Disease, 52, 6674. doi: 10.1016/j.nbd.2012.03.039.CrossRefGoogle ScholarPubMed
Moutoussis, M., Rutledge, R. B., Prabhu, G., Hrynkiewicz, L., Lam, J., Ousdal, O. T., … Dolan, R. J. (2018). Neural activity and fundamental learning, motivated by monetary loss and reward, are intact in mild to moderate major depressive disorder. PLOS One, 13(8), e0201451. doi: 10.1371/journal.pone.0201451.CrossRefGoogle ScholarPubMed
Naranjo, C. A., Tremblay, L. K., & Busto, U. E. (2001). The role of the brain reward system in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 25(4), 781823. doi: 10.1016/S0278-5846(01)00156-7.CrossRefGoogle ScholarPubMed
Nelson, B. D., Perlman, G., Klein, D. N., Kotov, R., & Hajcak, G. (2016). Blunted neural response to rewards as a prospective predictor of the development of depression in adolescent girls. American Journal of Psychiatry, 173(12), 12231230. doi: 10.1176/appi.ajp.2016.15121524.CrossRefGoogle ScholarPubMed
Nestler, E. J., & Carlezon, W. A. Jr. (2006). The mesolimbic dopamine reward circuit in depression. Biological Psychiatry 59(12), 11511159. doi: 10.1016/j.biopsych.2005.09.018.CrossRefGoogle ScholarPubMed
Ng, T. H., & Johnson, S. L. (2013). Rejection sensitivity is associated with quality of life, psychosocial outcome, and the course of depression in euthymic patients with bipolar I disorder. Cognitive Therapy and Research, 37(6), 11691178. doi: 10.1007/s10608-013-9552-1.CrossRefGoogle Scholar
Nolan, S. A., Flynn, C., & Garber, J. (2003). Prospective relations between rejection and depression in young adolescents. Journal of Personality and Social Psychology, 85(40), 745755. doi: 10.1037/0022-3514.85.4.745.CrossRefGoogle ScholarPubMed
Novak, K. D., & Foti, D. (2015). Teasing apart the anticipatory and consummatory processing of monetary incentives: An event-related potential study of reward dynamics. Psychophysiology, 52(11), 1470–82. doi: 10.1111/psyp.12504.CrossRefGoogle ScholarPubMed
Novak, B. K., Novak, K. D., Lynam, D. R., & Foti, D. (2016). Individual differences in the time course of reward processing: Stage-specific links with depression and impulsivity. Biological Psychology, 119, 7990. doi: 10.1016/j.biopsycho.2016.07.008.CrossRefGoogle ScholarPubMed
Oldham, S., Murawski, C., Fornito, A., Youssef, G., Yucel, M., & Lorenzetti, V. (2018). The anticipation and outcome phases of reward and loss processing: A neuroimaging meta-analysis of the monetary incentive delay task. Human Brain Mapping, 39(8), 33983418. doi: 10.1002/hbm.24184.CrossRefGoogle ScholarPubMed
Olino, T. M., Silk, J. S., Osterritter, C., & Forbes, E. E. (2015). Social reward in youth at risk for depression: A preliminary investigation of subjective and neural differences. Journal of Child and Adolescent Psychopharmacology, 25(9), 711721. doi: 10.1089/cap.2014.0165.CrossRefGoogle ScholarPubMed
Pechtel, P., Dutra, S. J., Goetz, E. L., & Pizzagalli, D. A. (2013). Blunted reward responsiveness in remitted depression. Journal of Psychiatric Research, 47(12), 18641869. doi: 10.1016/j.jpsychires.2013.08.011.CrossRefGoogle ScholarPubMed
Pegg, S., Ethridge, P., Shields, G. S., Slavich, G. M., Weinberg, A., & Kujawa, A. (2019). Blunted social reward responsiveness moderates the effect of lifetime social stress exposure on depressive symptoms. Frontiers in Behavioral Neuroscience, 13, 178. doi: 10.3389/fnbeh.2019.00178.CrossRefGoogle ScholarPubMed
Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842–57. doi: 10.1016/s1388-2457(99)00141-8.CrossRefGoogle ScholarPubMed
Pizzagalli, D. A., Holmes, A. J., Dillon, D. G., Goetz, E. L., Birk, J. L., Bogdan, R., … Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. American Journal of Psychiatry, 166(6), 702710. doi: 10.1176/appi.ajp.2008.08081201.CrossRefGoogle ScholarPubMed
Polezzi, D., Sartori, G., Rumiati, R., Vidotto, G., & Daum, I. (2010). Brain correlates of risky decision-making. Neuroimage, 49(2), 18861894. doi: 10.1016/j.neuroimage.2009.08.068.CrossRefGoogle ScholarPubMed
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 21282148. doi: 10.1016/j.clinph.2007.04.019.CrossRefGoogle ScholarPubMed
Polich, John, & Criado, José R. (2006). Neuropsychology and neuropharmacology of P3a and P3b. International Journal of Psychophysiology, 60(2), 172185. doi: 10.1016/j.ijpsycho.2005.12.012.CrossRefGoogle ScholarPubMed
Prinstein, M. J., & Aikins, J. W. (2004). Cognitive moderators of the longitudinal association between peer rejection and adolescent depressive symptoms. Journal of Abnormal Child Psychology, 32(2), 147158. doi: 10.1023/b:jacp.0000019767.55592.63.CrossRefGoogle ScholarPubMed
Proudfit, G. H. (2015). The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology, 52(4), 449459. doi: 10.1111/psyp.12370.CrossRefGoogle ScholarPubMed
Proudfit, G. H., Bress, J. N., Foti, D., Kujawa, A., & Klein, D. N. (2015). Depression and event-related potentials: Emotional disengagement and reward insensitivity. Current Opinion in Psychology, 4, 110113. doi: 10.1016/j.copsyc.2014.12.018.CrossRefGoogle ScholarPubMed
Rademacher, L., Krach, S., Kohls, G., Irmak, A., Grunder, G., & Spreckelmeyer, K. N. (2010). Dissociation of neural networks for anticipation and consumption of monetary and social rewards. Neuroimage, 49(5), 32763285. doi: 10.1016/j.neuroimage.2009.10.089.CrossRefGoogle ScholarPubMed
Robinson, O. J., Cools, R., Carlisi, C. O., Sahakian, B. J., & Drevets, W. C. (2012). Ventral striatum response during reward and punishment reversal learning in unmedicated major depressive disorder. American Journal of Psychiatry, 169(2), 152159. doi: 10.1176/appi.ajp.2011.11010137.CrossRefGoogle ScholarPubMed
Rohrbaugh, J. W., Syndulko, K., & Lindsley, D. B. (1976). Brain wave components of the contingent negative variation in humans. Science (New York, N.Y.), 191(4231), 1055–7. doi: 10.1126/science.1251217.CrossRefGoogle ScholarPubMed
Rolls, E. T. (2016). A non-reward attractor theory of depression. Neuroscience and Biobehavioral Reviews, 68, 4758. doi: 10.1016/j.neubiorev.2016.05.007.CrossRefGoogle ScholarPubMed
Rothkirch, M., Tonn, J., Kohler, S., & Sterzer, P. (2017). Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain, 140(4), 11471157. doi: 10.1093/brain/awx025.CrossRefGoogle ScholarPubMed
Ruff, C. C., & Fehr, E. (2014). The neurobiology of rewards and values in social decision making. Nature Reviews Neuroscience, 15(8), 549–62. doi: 10.1038/nrn3776.CrossRefGoogle ScholarPubMed
Rutledge, R. B., Moutoussis, M., Smittenaar, P., Zeidman, P., Taylor, T., Hrynkiewicz, L., … Dolan, R. J. (2017). Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiatry, 74(8), 790797. doi: 10.1001/jamapsychiatry.CrossRefGoogle ScholarPubMed
Sankar, A., Yttredahl, A. A., Fourcade, E. W., Mickey, B. J., Love, T. M., Langenecker, S. A., & Hsu, D. T. (2019). Dissociable neural responses to monetary and social gain and loss in women with major depressive disorder. Frontiers in Behavioral Neuroscience, 13, 149. doi: 10.3389/fnbeh.2019.00149.CrossRefGoogle ScholarPubMed
San Martin, R., Appelbaum, L. G., Pearson, J. M., Huettel, S. A., & Woldorff, M. G. (2013). Rapid brain responses independently predict gain maximization and loss minimization during economic decision making. Journal of Neuroscience, 33(16), 70117019. doi: 10.1523/JNEUROSCI.4242-12.2013.CrossRefGoogle ScholarPubMed
San Martín, R. (2012). Event-related potential studies of outcome processing and feedback-guided learning. Frontiers in Human Neuroscience, 6, 304. doi: 10.3389/fnhum.2012.00304.CrossRefGoogle ScholarPubMed
Satterthwaite, T. D., Kable, J. W., Vandekar, L., Katchmar, N., Bassett, D. S., Baldassano, C. F., … Wolf, D. H. (2015). Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacology, 40(9), 22582268. doi: 10.1038/npp.2015.75.CrossRefGoogle ScholarPubMed
Schaefer, H. S., Putnam, K. M., Benca, R. M., & Davidson, R. J. (2006). Event-related functional magnetic resonance imaging measures of neural activity to positive social stimuli in pre- and post-treatment depression. Biological Psychiatry, 60(9), 974986. doi: 10.1016/j.biopsych.2006.03.024.CrossRefGoogle ScholarPubMed
Sescousse, G., Caldu, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(4), 681696. doi: 10.1016/j.neubiorev.2013.02.002.CrossRefGoogle ScholarPubMed
Setterfield, M., Walsh, M., Frey, A. L., & McCabe, C. (2016). Increased social anhedonia and reduced helping behaviour in young people with high depressive symptomatology. Journal of Affective Disorders, 205, 372377. doi: 10.1016/j.jad.2016.08.020.CrossRefGoogle ScholarPubMed
Sharma, A., Satterthwaite, T. D., Vandekar, L., Katchmar, N., Daldal, A., Ruparel, K., … & Wolf, D. H. (2016). Divergent relationship of depression severity to social reward responses among patients with bipolar versus unipolar depression. Psychiatry Research: Neuroimaging, 254, 1825. doi: 10.1016/j.pscychresns.2016.06.003.CrossRefGoogle ScholarPubMed
Sheeber, L., Hops, H., & Davis, B. (2001). Family processes in adolescent depression. Clinical Child and Family Psychology Review, 4(1), 1935. doi: 10.1023/a:1009524626436.CrossRefGoogle ScholarPubMed
Sherdell, L., Waugh, C. E., & Gotlib, I. H. (2012). Anticipatory pleasure predicts motivation for reward in major depression. Journal of Abnormal Psychology, 121(1), 5160. doi: 10.1037/a0024945.CrossRefGoogle ScholarPubMed
Silk, J. S., Davis, S., McMakin, D. L., Dahl, R. E., & Forbes, E. E. (2012). Why do anxious children become depressed teenagers? The role of social evaluative threat and reward processing. Psychological Medicine, 42(10), 20952107. doi: 10.1017/S0033291712000207.CrossRefGoogle ScholarPubMed
Slavich, G. M., Tartter, M. A., Brennan, P. A., & Hammen, C. (2014). Endogenous opioid system influences depressive reactions to socially painful targeted rejection life events. Psychoneuroendocrinology, 49, 141149. doi: 10.1016/j.psyneuen.2014.07.009.CrossRefGoogle ScholarPubMed
Slavich, G. M., Thornton, T., Torres, L. D., Monroe, S. M., & Gotlib, I. H. (2009). Targeted rejection predicts hastened onset of major depression. Journal of Social and Clinical Psychology, 28(1), 223243. doi: 10.1521/jscp.2009.28.2.223.CrossRefGoogle ScholarPubMed
Smoski, M. J., Felder, J., Bizzell, J., Green, S. R., Ernst, M., Lynch, T. R., & Dichter, G. S. (2009). fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. Journal of Affective Disorder, 118(1-3), 6978. doi: 10.1016/j.jad.2009.01.034.CrossRefGoogle ScholarPubMed
Smoski, M. J., Rittenberg, A., & Dichter, G. S. (2011). Major depressive disorder is characterized by greater reward network activation to monetary than pleasant image rewards. Psychiatry Research: Neuroimaging, 194(3), 263270. doi: 10.1016/j.pscychresns.2011.06.012.CrossRefGoogle ScholarPubMed
Sorce, J. F., Emde, R. N., Campos, J. J., & Klinnert, M. D. (1985). Maternal emotional signaling: Its effect on the visual cliff behavior of 1-year-olds. Developmental Psychology, 21(1), 195200. doi: doi:10.1037/0012-1649.21.1.195.CrossRefGoogle Scholar
Spear, L. P. (2000). The adolescent brain and age-related behavioral manifestations. Neuroscience & Biobehavioral Reviews, 24(4), 417463. doi: 10.1016/s0149-7634(00)00014-2.CrossRefGoogle ScholarPubMed
Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R., & Jacobs, G. A. (1983). Manual for the state-trait anxiety inventory. Palo Alto, CA: Consulting Psychologist Press.Google Scholar
Spreckelmeyer, K. N., Krach, S., Kohls, G., Rademacher, L., Irmak, A., Konrad, K., … Grunder, G. (2009). Anticipation of monetary and social reward differently activates mesolimbic brain structures in men and women. Social Cognitive and Affective Neuroscience, 4(2), 158165. doi: 10.1093/scan/nsn051.CrossRefGoogle ScholarPubMed
Stavrakaki, C., & Vargo, B. (1986). The relationship of anxiety and depression: A review of the literature. British Journal of Psychiatry, 149(1), 716. doi: 10.1192/bjp.149.1.7.CrossRefGoogle ScholarPubMed
Steinberg, L., & Morris, A. S. (2001). Adolescent development. Annual Review of Psychology, 52, 83110. doi: 10.1146/annurev.psych.52.1.83.CrossRefGoogle ScholarPubMed
Stoy, M., Schlagenhauf, F., Sterzer, P., Bermpohl, F., Hagele, C., Suchotzki, K., Schmack, K., … Strohle, A. (2012). Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram. Journal of Psychopharmacology, 26(5), 677688. doi: 10.1177/0269881111416686.CrossRefGoogle ScholarPubMed
Stringaris, A., Vidal-Ribas Belil, P., Artiges, E., Lemaitre, H., Gollier-Briant, F., Wolke, S., Vulser, H., … & IMAGEN Consortium, . (2015). The brain's response to reward anticipation and depression in adolescence: Dimensionality, specificity, and longitudinal predictions in a community-based sample. American Journal of Psychiatry, 172(12), 12151223. doi: 10.1176/appi.ajp.2015.14101298.CrossRefGoogle Scholar
Strombach, T., Weber, B., Hangebrauk, Z., Kenning, P., Karipidis, I. I., Tobler, P. N., & Kalenscher, T. (2015). Social discounting involves modulation of neural value signals by temporoparietal junction. Proceedings of the National Academy of Sciences of the United States of America, 112(5), 16191624. doi: 10.1073/pnas.1414715112.CrossRefGoogle ScholarPubMed
Thibodeau, R., Jorgensen, R. S., & Kim, S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. Journal of Abnormal Psychology, 115(4), 715729. doi: 10.1037/0021-843X.115.4.715.CrossRefGoogle ScholarPubMed
Thomsen, K. R., Whybrow, P. C., & Kringelbach, M. L. (2015). Reconceptualizing anhedonia: Novel perspectives on balancing the pleasure networks in the human brain. Frontiers in Behavioral Neuroscience, 9, 49. doi: 10.3389/fnbeh.2015.00049.Google Scholar
Torrubia, R., Avila, C., Moltó, J., & Caseras, X. (2001). The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray's anxiety and impulsivity dimensions. Personality and Individual Differences, 31, 837862. doi: 10.1016/S0191-8869(00)00183-5.CrossRefGoogle Scholar
Treadway, M. T., & Zald, D. H. (2011). Reconsidering anhedonia in depression: Lessons from translational neuroscience. Neuroscience & Biobehavioral Reviews, 35(3), 537555. doi: 10.1016/j.neubiorev.2010.06.006.CrossRefGoogle ScholarPubMed
Ubl, B., Kuehner, C., Kirsch, P., Ruttorf, M., Diener, C., & Flor, H. (2015). Altered neural reward and loss processing and prediction error signalling in depression. Social Cognitive and Affective Neuroscience, 10(8), 11021112. doi: 10.1093/scan/nsu158vCrossRefGoogle ScholarPubMed
Urretavizcaya, M., Moreno, I., Benlloch, L., Cardoner, N., Serrallonga, J., Menchon, J. M., & Vallejo, J. (2003). Auditory event-related potentials in 50 melancholic patients: Increased N100, N200 and P300 latencies and diminished P300 amplitude. Journal of Affective Disorders, 74(3), 293297. doi: 10.1016/s0165-0327(02)00016-2.CrossRefGoogle ScholarPubMed
van Rijn, H., Kononowicz, T. W., Meck, W. H., Ng, K. K., & Penney, T. B. (2011). Contingent negative variation and its relation to time estimation: A theoretical evaluation. Frontiers in Integrative Neuroscience, 5, 91. doi: 10.3389/fnint.2011.00091.CrossRefGoogle ScholarPubMed
Walter, W. G., Cooper, R., Aldridge, V. J., McCallum, W. C., & Winter, A. L. (1964). Contingent negative variation: An electric sign of sensori-motor association and expectancy in the human brain. Nature, 203, 380384. doi: 10.1038/203380a0.CrossRefGoogle Scholar
Watson, D., & Naragon-Gainey, K. (2010). On the specificity of positive emotional dysfunction in psychopathology: Evidence from the mood and anxiety disorders and schizophrenia/schizotypy. Clinical Psychology Review, 30(7), 839848. doi: 10.1016/j.cpr.2009.11.002.CrossRefGoogle ScholarPubMed
Whitton, A. E., Treadway, M. T., & Pizzagalli, D. A. (2015). Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Current Opinion in Psychiatry, 28(1), 712. doi: 10.1097/YCO.0000000000000122.CrossRefGoogle ScholarPubMed
Wierzbicki, M., & Rexford, L. (1989). Cognitive and behavioral correlates of depression in clinical and nonclinical populations. Journal of Clinical Psychology, 45(6), 872877. doi: 10.1002/1097-4679(198911)45:6 < 872::aid-jclp2270450607>3.0.co;2-t.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Wilson, R. P., Colizzi, M., Bossong, M. G., Allen, P., Kempton, M., & Bhattacharyya, S. (2018). The neural substrate of reward anticipation in health: A meta-analysis of fMRI findings in the monetary incentive delay task. Neuropsychology Review 28(4), 496506. doi: 10.1007/s11065-018-9385-5.CrossRefGoogle ScholarPubMed
Wu, Y., & Zhou, X. L. (2009). The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Research, 1286, 114122. doi: 10.1016/j.brainres.2009.06.032.CrossRefGoogle ScholarPubMed
Yang, Q., Zhou, S., Gu, R., & Wu, Y. (2020). How do different kinds of incidental emotions influence risk decision making? Biological Psychology, 154, 107920. doi: 10.1016/j.biopsycho.2020.107920.CrossRefGoogle ScholarPubMed
Zhang, D., He, Z., Chen, Y., & Wei, Z. (2016). Deficits of unconscious emotional processing in patients with major depression: An ERP study. Journal of Affective Disorders, 199, 1320. doi: 10.1016/j.jad.2016.03.056.CrossRefGoogle Scholar
Zhang, D., Xie, H., He, Z., Wei, Z., & Gu, R. (2018). Impaired working memory updating for emotional stimuli in depressed patients. Frontiers in Behavioral Neuroscience, 12, 65. doi: 10.3389/fnbeh.2018.00065.CrossRefGoogle ScholarPubMed
Zhu, S., Wang, Y., Gao, S., & Jia, S. (2019). The influence of context condition on outcome evaluation in experimental conditions: Even vs. Neutral. International Journal of Psychophysiology, 141, 2836. doi: 10.1016/j.ijpsycho.2019.05.001.CrossRefGoogle ScholarPubMed
Zung, W. W. K. (1965). A self-rating depression scale. Archives of General Psychiatry, 12, 6370. doi: 10.1001/archpsyc.1965.01720310065008.CrossRefGoogle ScholarPubMed