Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-02T12:41:50.367Z Has data issue: false hasContentIssue false

Early life adversity predicts an accelerated cellular aging phenotype through early timing of puberty

Published online by Cambridge University Press:  16 June 2023

Elissa J. Hamlat*
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
Torsten B. Neilands
Affiliation:
Division of Prevention Science | Department of Medicine, University of California, San Francisco, CA, USA
Barbara Laraia
Affiliation:
School of Public Health, University of California, Berkeley, CA, USA
Joshua Zhang
Affiliation:
Department of Human Genetics, University of California, Los Angeles, CA, USA
Ake T. Lu
Affiliation:
Department of Human Genetics, University of California, Los Angeles, CA, USA
Jue Lin
Affiliation:
Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
Steve Horvath
Affiliation:
Department of Human Genetics, University of California, Los Angeles, CA, USA Department of Biostatistics, University of California, Los Angeles, CA, USA Altos Labs, San Diego, CA, USA
Elissa S. Epel
Affiliation:
Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
*
Corresponding author: Elissa J. Hamlat; Email: Elissa.Hamlat@ucsf.edu

Abstract

Background

The current study examined if early adversity was associated with accelerated biological aging, and if effects were mediated by the timing of puberty.

Methods

In early mid-life, 187 Black and 198 White (Mage = 39.4, s.d.age = 1.2) women reported on early abuse and age at first menstruation (menarche). Women provided saliva and blood to assess epigenetic aging, telomere length, and C-reactive protein. Using structural equation modeling, we created a latent variable of biological aging using epigenetic aging, telomere length, and C-reactive protein as indicators, and a latent variable of early abuse using indicators of abuse/threat events before age 13, physical abuse, and sexual abuse. We estimated the indirect effects of early abuse and of race on accelerated aging through age at menarche. Race was used as a proxy for adversity in the form of systemic racism.

Results

There was an indirect effect of early adversity on accelerated aging through age at menarche (b = 0.19, 95% CI 0.03–0.44), in that women who experienced more adversity were younger at menarche, which was associated with greater accelerated aging. There was also an indirect effect of race on accelerated aging through age at menarche (b = 0.25, 95% CI 0.04–0.52), in that Black women were younger at menarche, which led to greater accelerated aging.

Conclusions

Early abuse and being Black in the USA may both induce a phenotype of accelerated aging. Early adversity may begin to accelerate aging during childhood, in the form of early pubertal timing.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, N. E., & Rehkopf, D. H. (2008). US disparities in health: Descriptions, causes, and mechanisms. Annual Review of Public Health, 29, 235252.CrossRefGoogle Scholar
Baldwin, J. R., Reuben, A., Newbury, J. B., & Danese, A. (2019). Agreement between prospective and retrospective measures of childhood maltreatment: A systematic review and meta-analysis. JAMA Psychiatry, 76(6), 584593.CrossRefGoogle ScholarPubMed
Baumeister, D., Akhtar, R., Ciufolini, S., Pariante, C. M., & Mondelli, V. (2016). Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Molecular Psychiatry, 21(5), 642649.CrossRefGoogle ScholarPubMed
Belsky, D. W., Moffitt, T. E., Cohen, A. A., Corcoran, D. L., Levine, M. E., Prinz, J. A., … Caspi, A. (2018). Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: Do they measure the same thing? American Journal of Epidemiology, 187(6), 12201230.Google ScholarPubMed
Belsky, J. (2019). Early-life adversity accelerates child and adolescent development. Current Directions in Psychological Science, 28(3), 241246.CrossRefGoogle Scholar
Belsky, J., Ruttle, P. L., Boyce, W. T., Armstrong, J. M., & Essex, M. J. (2015). Early adversity, elevated stress physiology, accelerated sexual maturation, and poor health in females. Developmental Psychology, 51(6), 816.CrossRefGoogle ScholarPubMed
Belsky, J., & Shalev, I. (2016). Contextual adversity, telomere erosion, pubertal development, and health: Two models of accelerated aging, or one? Development and Psychopathology, 28(4), 13671383.CrossRefGoogle ScholarPubMed
Belsky, J., Steinberg, L., & Draper, P. (1991). Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Development, 62(4), 647670.CrossRefGoogle ScholarPubMed
Binder, A. M., Corvalan, C., Mericq, V., Pereira, A., Santos, J. L., Horvath, S., … Michels, K. B. (2018). Faster ticking rate of the epigenetic clock is associated with faster pubertal development in girls. Epigenetics, 13(1), 8594.CrossRefGoogle ScholarPubMed
Bleil, M. E., Booth-LaForce, C., & Benner, A. D. (2017). Race disparities in pubertal timing: Implications for cardiovascular disease risk among African American women. Population Research and Policy Review, 36(5), 717738.CrossRefGoogle ScholarPubMed
Brody, G. H., Miller, G. E., Yu, T., Beach, S. R. H., & Chen, E. (2016). Supportive family environments ameliorate the link between racial discrimination and epigenetic aging: A replication across two longitudinal cohorts. Psychological Science, 27(4), 530541.10.1177/0956797615626703CrossRefGoogle ScholarPubMed
Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In Bollen, K. & Long, K. (Eds.), Testing structural equation models (pp. 136162). Newbury Park: Sage.Google Scholar
Cawthon, R. M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Research, 30(10), e47e47.CrossRefGoogle ScholarPubMed
Charalampopoulos, D., McLoughlin, A., Elks, C. E., & Ong, K. K. (2014). Age at menarche and risks of all-cause and cardiovascular death: A systematic review and meta-analysis. American Journal of Epidemiology, 180(1), 2940.CrossRefGoogle Scholar
Churchwell, K., Elkind, M. S., Benjamin, R. M., Carson, A. P., Chang, E. K., Lawrence, W., … American Heart Association. (2020). Call to action: structural racism as a fundamental driver of health disparities: a presidential advisory from the American Heart Association. Circulation, 142(24), e454e468.10.1161/CIR.0000000000000936CrossRefGoogle ScholarPubMed
Colich, N. L., & Mclaughlin, K. A. (2022). Accelerated pubertal development as a mechanism linking trauma exposure with depression and anxiety in adolescence. Current Opinion in Psychology, 46, 101338.CrossRefGoogle ScholarPubMed
Colich, N. L., Rosen, M. L., Williams, E. S., & McLaughlin, K. A. (2020). Biological aging in childhood and adolescence following experiences of threat and deprivation: A systematic review and meta-analysis. Psychological Bulletin, 146(9), 721764.CrossRefGoogle ScholarPubMed
D'Mello, M. J., Ross, S. A., Briel, M., Anand, S. S., Gerstein, H., & Paré, G. (2015). Association between shortened leukocyte telomere length and cardiometabolic outcomes: Systematic review and meta-analysis. Circulation: Cardiovascular Genetics, 8(1), 8290.Google ScholarPubMed
Ehrlich, K. B., Ross, K. M., Chen, E., & Miller, G. E. (2016). Testing the biological embedding hypothesis: Is early life adversity associated with a later proinflammatory phenotype?. Development and Psychopathology, 28(4pt2), 12731283.CrossRefGoogle ScholarPubMed
Ellis, B. J. (2004). Timing of pubertal maturation in girls: An integrated life history approach. Psychological Bulletin, 130, 920958.10.1037/0033-2909.130.6.920CrossRefGoogle ScholarPubMed
Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., & Marks, J. S. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: The adverse childhood experiences (ACE) study. American Journal of Preventive Medicine, 14(4), 245258.CrossRefGoogle ScholarPubMed
Field, A. E., Robertson, N. A., Wang, T., Havas, A., Ideker, T., & Adams, P. D. (2018). DNA methylation clocks in aging: Categories, causes, and consequences. Molecular Cell, 71(6), 882895.CrossRefGoogle ScholarPubMed
Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239247.CrossRefGoogle ScholarPubMed
Freedman, D. S., Khan, L. K., Serdula, M. K., Dietz, W. H., Srinivasan, S. R., & Berenson, G. S. (2002). Relation of age at menarche to race, time period, and anthropometric dimensions: The Bogalusa Heart Study. Pediatrics, 110(4), e43.10.1542/peds.110.4.e43CrossRefGoogle ScholarPubMed
Fritz, M. S., Cox, M. G., & MacKinnon, D. P. (2015). Increasing statistical power in mediation models without increasing sample size. Evaluation & the Health Professions, 38(3), 343366.CrossRefGoogle ScholarPubMed
Gassen, N. C., Chrousos, G. P., Binder, E. B., & Zannas, A. S. (2017). Life stress, glucocorticoid signaling, and the aging epigenome: Implications for aging-related diseases. Neuroscience & Biobehavioral Reviews, 74, 356365.CrossRefGoogle ScholarPubMed
Geronimus, A. T. (1992). The weathering hypothesis and the health of African-American women and infants: evidence and speculations. Ethnicity and Disease, 2(3), 207221.Google ScholarPubMed
Geronimus, A. T., Hicken, M., Keene, D., & Bound, J. (2006). ‘Weathering’ and age patterns of allostatic load scores among blacks and whites in the United States. American Journal of Public Health, 96(5), 826833.10.2105/AJPH.2004.060749CrossRefGoogle ScholarPubMed
Geronimus, A. T., Hicken, M. T., Pearson, J. A., Seashols, S. J., Brown, K. L., & Cruz, T. D. (2010). Do US black women experience stress-related accelerated biological aging? Human Nature, 21(1), 1938.10.1007/s12110-010-9078-0CrossRefGoogle ScholarPubMed
Gunnar, M. R., DePasquale, C. E., Reid, B. M., & Donzella, B. (2019). Pubertal stress recalibration reverses the effects of early life stress in postinstitutionalized children. Proceedings of the National Academy of Sciences, 116(48), 2398423988.CrossRefGoogle ScholarPubMed
Hamlat, E. J., Adler, N. E., Laraia, B., Surachman, A., Lu, A. T., Zhang, J., … Epel, E. S. (2022). Association of subjective social status with epigenetic aging among black and white women. Psychoneuroendocrinology, 141, 105748.CrossRefGoogle ScholarPubMed
Hamlat, E. J., Prather, A. A., Horvath, S., Belsky, J., & Epel, E. S. (2021). Early life adversity, pubertal timing, and epigenetic age acceleration in adulthood. Developmental Psychobiology, 63(5), 890902.CrossRefGoogle ScholarPubMed
Hardt, J., & Rutter, M. (2004). Validity of adult retrospective reports of adverse childhood experiences: Review of the evidence. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 45(2), 260273.CrossRefGoogle ScholarPubMed
Haycock, P. C., Heydon, E. E., Kaptoge, S., Butterworth, A. S., Thompson, A., & Willeit, P. (2014). Leucocyte telomere length and risk of cardiovascular disease: Systematic review and meta-analysis. British Medical Journal, 349.CrossRefGoogle ScholarPubMed
Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408420.CrossRefGoogle Scholar
Hooten, N. N., Pacheco, N. L., Smith, J. T., & Evans, M. K. (2022). The accelerated aging phenotype: The role of race and social determinants of health on aging. Ageing Research Reviews, 73, 101536.CrossRefGoogle Scholar
Horvath, S., Gurven, M., Levine, M. E., Trumble, B. C., Kaplan, H., Allayee, H., … Jamieson, B. D. (2016). An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biology, 17(1), 171.CrossRefGoogle Scholar
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371384.CrossRefGoogle ScholarPubMed
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: a Multidisciplinary Journal, 6(1), 155.10.1080/10705519909540118CrossRefGoogle Scholar
Hughes, K., Bellis, M. A., Hardcastle, K. A., Sethi, D., Butchart, A., Mikton, C., … Dunne, M. P. (2017). The effect of multiple adverse childhood experiences on health: A systematic review and meta-analysis. The Lancet Public Health, 2(8), e356e366.CrossRefGoogle Scholar
Hunt, S. C., Chen, W., Gardner, J. P., Kimura, M., Srinivasan, S. R., Eckfeldt, J. H., … Aviv, A. (2008). Leukocyte telomeres are longer in African Americans than in whites: The national heart, lung, and blood institute family heart study and the Bogalusa heart study. Aging Cell, 7(4), 451458.CrossRefGoogle ScholarPubMed
Emerging Risk Factors Collaboration, Kaptoge, S., Di Angelantonio, E., Lowe, G., Pepys, M. B., Thompson, S. G., Collins, R., & Danesh, J. (2010). Emerging risk factors collaboration C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. The Lancet, 375(9709), 132140.Google ScholarPubMed
Kenny, D. A., & Judd, C. M. (2014). Power anomalies in testing mediation. Psychological Science, 25(2), 334339.CrossRefGoogle ScholarPubMed
Khera, A., McGuire, D. K., Murphy, S. A., Stanek, H. G., Das, S. R., Vongpatanasin, W., … de Lemos, J. A. (2005). Race and gender differences in C-reactive protein levels. Journal of the American College of Cardiology, 46(3), 464469.CrossRefGoogle ScholarPubMed
Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). New York, NY: The Guilford Press.Google Scholar
Koss, K. J., Schneper, L. M., Brooks-Gunn, J., McLanahan, S., Mitchell, C., & Notterman, D. A. (2020). Early puberty and telomere length in preadolescent girls and mothers. The Journal of Pediatrics, 222, 193199.CrossRefGoogle ScholarPubMed
Li, X., Ploner, A., Wang, Y., Magnusson, P. K., Reynolds, C., Finkel, D., … Hägg, S. (2020). Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. Elife, 9, e51507.CrossRefGoogle ScholarPubMed
Li, Z., He, Y., Wang, D., Tang, J., & Chen, X. (2017). Association between childhood trauma and accelerated telomere erosion in adulthood: A meta-analytic study. Journal of Psychiatric Research, 93, 6471.10.1016/j.jpsychires.2017.06.002CrossRefGoogle ScholarPubMed
Lin, J., Epel, E., Cheon, J., Kroenke, C., Sinclair, E., Bigos, M., … Blackburn, E. (2010). Analyses and comparisons of telomerase activity and telomere length in human T and B cells: Insights for epidemiology of telomere maintenance. Journal of Immunological Methods, 352(1–2), 7180.CrossRefGoogle Scholar
Liu, Z., Chen, B. H., Assimes, T. L., Ferrucci, L., Horvath, S., & Levine, M. E. (2019). The role of epigenetic aging in education and racial/ethnic mortality disparities among older US Women. Psychoneuroendocrinology, 104, 1824.CrossRefGoogle Scholar
Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., … Whitsel, E. A. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging, 11(2), 303.CrossRefGoogle ScholarPubMed
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99128.10.1207/s15327906mbr3901_4CrossRefGoogle ScholarPubMed
McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840(1), 3344.10.1111/j.1749-6632.1998.tb09546.xCrossRefGoogle ScholarPubMed
Merrick, M. T., Ford, D. C., Ports, K. A., Guinn, A. S., Chen, J., Klevens, J., … Ottley, P. (2019). Vital signs: Estimated proportion of adult health problems attributable to adverse childhood experiences and implications for prevention – 25 States, 2015–2017. Morbidity and Mortality Weekly Report, 68(44), 9991005.CrossRefGoogle Scholar
Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychological Bulletin, 137(6), 959997.CrossRefGoogle Scholar
Morrison, J. (1992). Obesity and cardiovascular disease risk factors in black and white girls: The NHLBI Growth and Health Study. American Journal of Public Health, 82(12), 16131620.Google Scholar
Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user's guide (8th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
Needham, B. L., Salerno, S., Roberts, E., Boss, J., Allgood, K. L., & Mukherjee, B. (2019). Do black/white differences in telomere length depend on socioeconomic status? Biodemography and Social Biology, 65(4), 287312.10.1080/19485565.2020.1765734CrossRefGoogle ScholarPubMed
Newbury, J. B., Arseneault, L., Moffitt, T. E., Caspi, A., Danese, A., Baldwin, J. R., & Fisher, H. L. (2018). Measuring childhood maltreatment to predict early-adult psychopathology: Comparison of prospective informant-reports and retrospective self-reports. Journal of Psychiatric Research, 96, 5764.CrossRefGoogle ScholarPubMed
O'Rourke, H. P., & MacKinnon, D. P. (2015). When the test of mediation is more powerful than the test of the total effect. Behavior Research Methods, 47, 424442.CrossRefGoogle Scholar
Paradies, Y., Ben, J., Denson, N., Elias, A., Priest, N., Pieterse, A., … Gee, G. (2015). Racism as a determinant of health: a systematic review and meta-analysis. PloS ONE, 10(9), e0138511.CrossRefGoogle Scholar
Phelan, J. C., & Link, B. G. (2015). Is racism a fundamental cause of inequalities in health? Annual Review of Sociology, 41, 311330.CrossRefGoogle Scholar
Raffington, L., Belsky, D. W., Kothari, M., Malanchini, M., Tucker-Drob, E. M., & Harden, K. P. (2021). Socioeconomic disadvantage and the pace of biological aging in children. Pediatrics, 147(6), e2020024406.CrossRefGoogle ScholarPubMed
Reuben, A., Moffitt, T. E., Caspi, A., Belsky, D. W., Harrington, H., Schroeder, F., … Danese, A. (2016). Lest we forget: Comparing retrospective and prospective assessments of adverse childhood experiences in the prediction of adult health. Journal of Child Psychology and Psychiatry, 57(10), 11031112.CrossRefGoogle ScholarPubMed
Rewak, M., Buka, S., Prescott, J., De Vivo, I., Loucks, E. B., Kawachi, I., … Kubzansky, L. D. (2014). Race-related health disparities and biological aging: Does rate of telomere shortening differ across blacks and whites? Biological Psychology, 99, 9299.CrossRefGoogle ScholarPubMed
Ridout, K. K., Levandowski, M., Ridout, S. J., Gantz, L., Goonan, K., Palermo, D., … Tyrka, A. R. (2018). Early life adversity and telomere length: A meta-analysis. Molecular Psychiatry, 23(4), 858871.CrossRefGoogle ScholarPubMed
Saxbe, D. E., Negriff, S., Susman, E. J., & Trickett, P. K. (2015). Attenuated hypothalamicpituitary-adrenal axis functioning predicts accelerated pubertal development in girls 1 year later. Development and Psychopathology, 27(3), 819828.CrossRefGoogle Scholar
Simpkin, A. J., Howe, L. D., Tilling, K., Gaunt, T. R., Lyttleton, O., McArdle, W. L., … Relton, C. L. (2017). The epigenetic clock and physical development during childhood and adolescence: Longitudinal analysis from a UK birth cohort. International Journal of Epidemiology, 46(2), 549558.Google ScholarPubMed
Slavich, G. M., & Shields, G. S. (2018). Assessing lifetime stress exposure using the Stress and Adversity Inventory for Adults (Adult STRAIN): An overview and initial validation. Psychosomatic Medicine, 80(1), 1727.CrossRefGoogle ScholarPubMed
Slopen, N., Shonkoff, J. P., Albert, M. A., Yoshikawa, H., Jacobs, A., Stoltz, R., & Williams, D. R. (2016). Racial disparities in child adversity in the US: Interactions with family immigration history and income. American Journal of Preventive Medicine, 50(1), 4756.CrossRefGoogle ScholarPubMed
Sumner, J. A., Colich, N. L., Uddin, M., Armstrong, D., & McLaughlin, K. A. (2019). Early experiences of threat, but not deprivation, are associated with accelerated biological aging in children and adolescents. Biological Psychiatry, 85(3), 268278.10.1016/j.biopsych.2018.09.008CrossRefGoogle Scholar
Teschendorff, A. E., Marabita, F., Lechner, M., Bartlett, T., Tegner, J., Gomez-Cabrero, D., & Beck, S. (2013). A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics, 29(2), 189196.10.1093/bioinformatics/bts680CrossRefGoogle ScholarPubMed
The National Heart, Lung, and Blood Institute Growth and Health Study Research Group. (1992). Obesity and cardiovascular disease risk factors in black and white girls: the NHLBI Growth and Health Study. American Journal of Public Health, 82(12), 16131620.CrossRefGoogle Scholar
Toussaint, L., Shields, G. S., Dorn, G., & Slavich, G. M. (2016). Effects of lifetime stress exposure on mental and physical health in young adulthood: How stress degrades and forgiveness protects health. Journal of Health Psychology, 21(6), 10041014.CrossRefGoogle ScholarPubMed
Willeit, P., Raschenberger, J., Heydon, E. E., Tsimikas, S., Haun, M., Mayr, A., … Kiechl, S. (2014). Leucocyte telomere length and risk of type 2 diabetes mellitus: New prospective cohort study and literature-based meta-analysis. PLoS ONE, 9(11), e112483.CrossRefGoogle ScholarPubMed
Williams, D. R. (2012). Miles to go before we sleep: Racial inequities in health. Journal of Health and Social Behavior, 53(3), 279295.10.1177/0022146512455804CrossRefGoogle ScholarPubMed
Williams, D. R., Lawrence, J. A., & Davis, B. A. (2019). Racism and health: Evidence and needed research. Annual Review of Public Health, 40, 105125.CrossRefGoogle ScholarPubMed
Williams, D. R., & Rucker, T. D. (2000). Understanding and addressing racial disparities in health care. Health Care Financing Review, 21(4), 75.Google ScholarPubMed
Wolf, E. J., Maniates, H., Nugent, N., Maihofer, A. X., Armstrong, D., Ratanatharathorn, A., … Logue, M. W. (2018). Traumatic stress and accelerated DNA methylation age: A meta-analysis. Psychoneuroendocrinology, 92, 123134.CrossRefGoogle ScholarPubMed
Zahodne, L. B., Kraal, A. Z., Zaheed, A., Farris, P., & Sol, K. (2019). Longitudinal effects of race, ethnicity, and psychosocial disadvantage on systemic inflammation. SSM-Population Health, 7, 100391.CrossRefGoogle ScholarPubMed
Zannas, A. S., Arloth, J., Carrillo-Roa, T., Iurato, S., Röh, S., Ressler, K. J., … Mehta, D. (2015). Lifetime stress accelerates epigenetic aging in an urban, African American cohort: Relevance of glucocorticoid signaling. Genome Biology, 16, 266.CrossRefGoogle Scholar
Supplementary material: File

Hamlat et al. supplementary material

Hamlat et al. supplementary material
Download Hamlat et al. supplementary material(File)
File 57 KB